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Going after the unknown is always fascinating, I think. It becomes part of

your life, this desire to know.

— Mark Oliphant

Nothing in the history of mankind has opened our eyes to the possibilities

of science as has the development of atomic power. In the last 200 years,

people have seen the coming of the steam engine, the steamboat, the

railroad locomotive, the automobile, the airplane, radio, motion pictures,

television, the machine age in general. Yet none of it seemed quite so

fantastic, quite so unbelievable, as what man has done since 1939 with the

atom. There seem to be almost no limits to what may be ahead:

inexhaustible energy, new worlds, ever-widening knowledge of the

physical universe.

— Isaac Asimov





A B S T R A C T

Plasma magnetic control is one of the core engineering issues to be tackled

in a fusion device. Over the last years, model based approaches have been

proposed to face this issue, proving their effectiveness and allowing to re-

duce the time span needed for control testing and validation.

The first part of this work is intended to give an overview of the subject,

from the historical milestones to the underlying physics; the most com-

mon techniques for tokamak plasmas electromagnetic modelling and con-

trol are also introduced and discussed. After this introduction, a general

architecture for plasma magnetic control in tokamaks is proposed. Finally,

the proposed solution is applied to the Experimental Advanced Supercon-

ducting Tokamak (EAST), where a new plasma magnetic control architecture

was developed and implemented during the 2016-2018 experimental cam-

paigns, and to the Japan Torus-60 Super Advanced (JT-60SA) device, which

is currently under construction in Japan.

S O M M A R I O

Il controllo magnetico è uno dei principali problemi ingegneristici nei reat-

tori a fusione nucleare. Nel corso degli anni, approcci model-based si sono im-

posti all’attenzione della comunità grazie alla loro efficacia e alla possibilità

che offrono di ridurre il tempo necessario per il collaudo e la validazione

dei sistemi di controllo.

La prima parte di questa tesi fornisce una panoramica sull’argomento,

dai principali momenti storici ai concetti fisici alla base della fusione nu-

cleare; le tecniche più comuni di modellistica e controllo elettromagnetici

del plasma sono introdotte e discusse. Dopo questa introduzione, viene
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proposta una architettura generale per il sistema di controllo magnetico

nei tokamak. Infine, la soluzione proposta è applicata ad EAST, per il quale

è stato proposto e implementato un nuovo sistema di controllo magneti-

co durante le campagne sperimentali 2016-2018, e a JT-60SA, attualmente in

costruzione in Giappone.
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F O R E W O R D

Over the last century, scientists have looked at nuclear fusion as the holy

grail of energy production: clean, sustainable and almost unlimited. Innu-

merable attempts have been done to tame this source of energy, the most

promising being the tokamak reactor. Tokamaks are complex, distributed

parameter, highly nonlinear systems, which suffer from several kinds of

instabilities. Thus, to push the performances towards the attractive goal of

energy production, effective active control strategies become a fundamental

requirement. In particular, magnetic control represents a core issue in nu-

clear fusion, allowing to achieve improved performances in terms of plasma

properties and stability. During the past years, model based approaches have

shown their effectiveness in facing this problem. This is mainly due to two

main reasons:

• accurate numerical models of the plasma response usually yield a

great improvement in terms of controller performances;

• this kind of approach allows to design and tune the controller mostly

offline. Indeed, most of the effort is moved from experimental con-

trollers tuning to the development of reliable modeling and simula-

tion tools; once this task has been accomplished, a very low number

of experiments is needed for fine-tuning and validation. This prompts

the main advantage of reducing the number of needed technical tests,

allowing to use the same time for scientific experiments.

Magnetic control is considered a substantially solved problem in toka-

mak reactors; however, a generally accepted standard solution to it does not

exist. In this view, a proposal for a flexible magnetic control architecture is

put forward in this thesis. This architecture provides a sound and flexible
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framework for the implementation and validation of all the different mag-

netic control loops needed on a modern tokamak, and allows to easily inte-

grate additional controllers if needed. It is largely model based, as it relies

on the CREATE-L [1] and CREATE-NL [2] equilibrium codes, which have

been used over the last years for modeling purposes and for the design of

advanced magnetic control solutions on several machines (e. g. JET [3, 4]

and TCV [5]). Furthermore, it can be applied to virtually every tokamak,

once the modelling tools have been configured properly.

This thesis is organized as follows:

• Part I contains an introduction to magnetic confinement nuclear fu-

sion. In particular, chapter 1 contains a brief chronicle of the historical

milestones that led to nuclear fusion as we know it today over the

last century. This overview is thought as a homage to the scientists

who pioneered this research field and wrote its history, and is not

meant to be exhaustive. Chapter 2, instead, contains an overview of

some of the scientific foundations of magnetic confinement fusion. In

particular, in sec. 2.1 some basic notions regarding nuclear fusion are

introduced. Sec. 2.2 contains a brief introduction to plasma physics;

some of its core aspects are discussed, which underlie the rest of this

work. In sec. 2.3 the tokamak configuration for magnetic confinement

fusion is described in some detail.

• Part II contains an overview of plasma electromagnetic modelling

and control. Chapter 3 is about tokamak axisymmetric modelling.

The Grad-Shafranov equation is derived from the ideal Magneto-

Hydro-Dynamic (MHD) plasma equilibrium condition and discussed

in sec. 3.1. Its resolution by means of Finite Element Method (FEM)

techniques is discussed in sec. 3.2.2, while in sec. 3.3 a linearized

model for the plasma evolution is derived. Linearized models around

a given MHD equilibrium are the starting point for the control design
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techniques presented in the rest of the thesis. Chapter 4 gives an

overview of standard plasma magnetic control. Chapter 5 contains

the description of a general plasma magnetic control architecture,

whose application to the EAST and JT-60SA tokamaks will be the main

topic of Part III.

• Part III reports on the results obtained with the proposed control

architecture. Chapter 6 begins with a motivation for the experimen-

tal activity carried out at EAST during the 2016-2018 period; then, a

brief description of the machine is given in sec. 6.2. The applications

of the modelling techniques introduced in chapter 2 to this device

is discussed in sec. 6.3. Sec. 6.4 describes the architecture of EAST’s

plasma magnetic control system. A simulation environment has been

set up and validated in order to reproduce the experiments; it has

been used extensively for the control design activities described in

chapter 7. Simulation results are discussed in sec. 6.4.2. An overview

of the modeling and validation activities and of the simulation en-

vironment developed for EAST has been published in [6]. Chapter 7

reports on the experimental activity. New control algorithms for verti-

cal stabilization, Poloidal Field Coils (PFC) current control and plasma

current, position and shape control have been proposed and tested,

according to the proposed general architecture. Sections 5.1-5.5 each

discuss one of the proposed control architecture components. Most of

the contents of these sections have been published in [7–11]. Sec. 7.5

reports on preliminary results obtained in simulation for the control

of the poloidal flux expansion in the divertor region, originally pub-

lished in [12]. Finally, sec. 7.6 describes an approach for the estimation

of the eddy currents in the tokamak conducting structures and of the

plasma shape based on a Kalman filter approach; the results presented

in this section have been published in [13]. Chapter 8 reports on pre-

liminary studies carried out for the design of the plasma magnetic

control of the JT-60SA tokamak. A brief description of the machine is
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given in sec. 8.1; the adaptation of the proposed architecture to this de-

vice is discussed in sec. 8.2, while simulation results are presented in

sec. 8.3. The results presented in chapter 8 have been mostly adapted

from [14, 15].

In addition to the activities described in this thesis, I had the pleasure

of participating in other projects that have not been included in this work.

In particular, in collaboration with the CREATE team and in the scope of

the activities for the F4E OPE-700 contract, a Graphical User Interface was

developed for the generation and manipulation of equilibria and linearized

models, which was customized for the EAST, International Thermonuclear

Experimental Reactor (ITER) and JT-60SA tokamaks. The interface is thought

as a user-friendly tool for tokamak scenario and magnetic control design,

optimization and simulation, and includes Simulink libraries specifically

designed for magnetic control; these libraries have been used to produce

the simulation results of chapter 8. These tools have been installed and

tested at the Remote Experimentation Center (Naka, Japan), and have been

recently released as a beta version. They were also used to perform prelimi-

nary studies on the possibility of exploiting In-Vessel coils "kicks" for Edge

Localized Mode (ELM)s triggering at JT-60SA.

Finally, I would like to thank prof. Gianmaria De Tommasi for his con-

tributions in chapter 5 and in section 7.1.2, dr. Antonio Castaldo for those

in sec. 6.3 and drs. Doménica Rivera for the work which led to sec. 8.3.2.

Napoli, September 2018
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I N T R O D U C T I O N





1
H I S T O R I C A L O V E RV I E W

"The beginning in every task is the chief thing. "

— Plato

The idea of nuclear fusion as a viable way to energy production dates

back to the year 1920. It was the English scientist Arthur Eddington (1882 –

1944) who first put forward the hypothesis that the large amount of energy

needed in order to light up a star could have its origin in fusion reactions of

light elements [16]. During the previous couple of years, at the Cavendish

Laboratories of Cambridge University, Francis Aston (1877 – 1945) had con-

cocted and built an instrument -his mass spectrograph- that could be used

to measure the mass of atomic nuclei with extreme accuracy. In this way,

he had achieved two breakthrough discoveries: the first was the existence

of isotopes, a fact that would have not been fully understood until James

Chadwick discovered the neutron in 1932; the second was that the mass of

these isotopes -in particular those of hydrogen- was not an exact multiple

of that of the ’normal’ form of the element. In the same way, an helium

nucleum was slightly lighter than the sum of four hydrogen ones. At the

British Association for Advancement of Science meeting in Cardiff, in 1920,

sir Eddington commented on Aston’s findings in the following way [17]:

«Aston has further shown conclusively that the mass of the helium atom is less than the
sum of the masses of the four hydrogen atoms which enter into it and in this at least the
chemists agree with him. There is a loss of mass in the synthesis amounting to 1 part in
120, the atomic weight of hydrogen being 1.008 and that of helium just 4.00. [...] Now mass
cannot be annihilated and the deficit can only represent the mass of the electrical energy

3
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liberated when helium is made out of hydrogen. If 5% of a star’s mass consists initially of
hydrogen atoms, which are gradually being combined to form more complex elements, the
total heat liberated will more than suffice for our demands, and we need look no further for
the source of a star’s energy.»

Incidentally, Eddington was the same scientist who, in 1919, guided the

expedition to São Tomé e Prìncipe that provided the first experimental evi-

dence of Einstein’s General Relativity Theory, by measuring the position of

some stars in the Torus constellation during a solar eclipse.

Figure 1: Francis Aston (left).
Sir Arthur Eddington and one of the pictures he took in 1919 (center-
right).

However, according to Eddington’s calculations fusion reactions would

have needed much hotter stars than the one experimentally observed look-

ing at the night sky. A possible solution to this puzzle was found in 1929,

when Robert d’Escourt Atkinson (1898 - 1982) and Fritz Houtermans (1903 –

1966) applied the recently discovered phenomenon of quantum tunnelling,

which had been formalized by the Russian-American physicist George

Gamow (1904 - 1968) just one year before, to nuclear fusion processes in

stars. In this way, they demonstrated that fusion reactions could take place

at much lower temperatures than the 40 million Kelvin that sir Eddington

had initially calculated by means of classic theory [18].

In 1932, at the Cavendish Laboratory of the University of Cambridge,

two students of Ernest Rutherford, namely John Cockcroft (1897 – 1967)

and Ernest Walton (1903 – 1995), performed the first artificial nuclear dis-
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Figure 2: Robert Atkinson and Fritz Houtermans.

integration in history. In their experiments, they used a particle accelerator

powered by a generator of their invention -named Cockcroft-Walton genera-

tor after them- to fire high energy protons into metal targets. Some of the

nuclei in the targets were transformed into different elements, and part of

their mass were converted into energy during the process. This experiment

was performed again, this time in public, at the Royal Institution in 1934.

Needless to say, the discovery caught the headlines. An article appeared on

the New York Times issue of March 30, 1934 [19] claimed that:

«Science has obtained conclusive proof from recent experiments that the innermost
citadel of matter, the nucleus of the atom, can be smashed, yielding tremendous amounts of
energy and probably vast new stores of gold, radium and other valuable minerals.»

Turning lead into gold proved to be not as practical as hoped; neverthe-

less, Cockcroft and Walton won a Nobel Prize in Physics for the "Transmu-

tation of atomic nuclei by artificially accelerated atomic particles" in 1951.

Meanwhile, in 1933, a small amount of heavy water was presented to

the Cavendish Laboratory from the American physical chemist Gilbert N.

Lewis (the scientist who discovered the covalent bond). Mark Oliphant

(1901 – 2000), together with Paul Harteck (1902 – 1985) and Rutherford

himself, used the same accelerator to fire deuterium nuclei (called diplons

by Rutherford) against several targets consisting in metal foils containing

deuterium, lithium and other elements [20]. In this way, not only he dis-

covered tritium and 3-helium, but he also noticed that deuterons could be
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Figure 3: Walton (inside the detector) operating the Cockcroft-Walton machine,
which produced the first laboratory atomic disintegrations in 1932 (left).
Rutherford’s public demonstration of deuterium nuclei fusion at the
Royal Institution in 1934 (right).

made to react with each other, producing particles that had more energy

than the original nuclei. The first laboratory nuclear fusion reactions had

been obtained.

Figure 4: Walton, Rutherford and Cockcroft (left).
Mark Oliphant (right).

Oliphant went on experimenting with other fusion reactions, i. e. deuterons-

tritons, deuterons-helions. In particular, the reaction between deuterium

and tritium would later become the basis for the hydrogen bomb, an out-

come that Oliphant had not foreseen. In an interview published on Portraits

in Science in 1994, he said [21]:

«We were able to discover two new kinds of atomic species, one was hydrogen of mass
3, unknown until that time, and the other helium of mass 3, also unknown. [. . . ] We were
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able to show that heavy hydrogen nuclei, that is to say the cores of heavy hydrogen atoms,
could be made to react with one another to produce a good deal of energy and new kinds
of atom.[. . . ] Of course, we had no idea whatever that this would one day be applied to
make hydrogen bombs. Our curiosity was just curiosity about the structure of the nucleus
of the atom, and the discovery of these reactions was purely, as the Americans would put
it, coincidental.»

At that point, World War II had come just around the corner. In 1936-37,

the main results on nuclear physics obtained until that time were summa-

rized in a series of articles written by Hans Bethe (1906 – 2005), which

became widely known as the "Bethe’s Bible" [22–24]. Bethe was an incred-

ibly talented theoretical physicist. In 1938, he was invited to the Carnegie

Institute and George Washington University’s fourth annual Washington

Conference of Theoretical Physics. At the beginning, he refused to attend,

since the topic did not really appeal to him: the conference was about so-

lar and stellar energy production. He was eventually convinced by Edward

Teller (1908 – 2003) to participate. During the conference, Bengt Strömgren

challenged the other physicists to give a theoretical explanation of the most

recent observations of Sun’s temperature, density and chemical composi-

tion. By the end of the conference, Bethe came up with a proton-proton re-

action cycle. Moreover, he kept studying the subject and later on proposed

the CNO-cycle. He wrote two articles, one co-authored by Charles Critch-

field on the p-p cycle and the other on the CNO, and sent both to Physical

Review. However, after Kristallnacht, Bethe’s mother decided to move from

Germany to the US, and Hans needed 250$ to release her furniture. One of

his students discovered that the New York Academy of Sciences was offer-

ing a 500$ prize for the best unpublished paper on stellar energy, and so he

withdrew the CNO-cycle paper and applied for the prize. Not only he was

awarded those 500$, he also won the 1967 Nobel Prize for his work. [25]

In June 1942, in Chicago, and then in July at the University of Califor-

nia, Berkeley, Robert Oppenheimer (1904 – 1967) and Enrico Fermi (1901

– 1954) convened a series of scientific meetings to discuss viable design
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concepts for an atomic bomb. Among the participants, the theoretical physi-

cists Hans Bethe himself and Edward Teller and the experimental physicists

Emilio Segrè and Felix Bloch are probably some of the most famous names.

It was the beginning of the Manhattan Project. The possibility of making a

fission device was confirmed during the first of the two conferences. More-

over, during the second one, Teller raised the bar, putting forward the idea

-originally proposed by Fermi- that not only a fission device could be ac-

tually realized, but it could be used to generate enough energy to trig-

ger deuterium-tritium fusion reactions in a what he called a "super" bomb.

This idea would later develop into what we know today as the hydrogen

bomb. Despite being initially contrary to the project, Bethe also took part in

the H-bomb development. The studies on the Teller-Ulam configuration were

completed in 1951 (with some help from John von Neumann), and a first

full-scale test was performed in 1952, with the drop of Ivy Mike. Later on,

Hans Bethe would say [26]:

«After the H-bomb was made, reporters started to call Teller the father of the H-bomb.
For the sake of history, I think it is more precise to say that Ulam is the father, because he
provided the seed, and Teller is the mother, because he remained with the child. As for me,
I guess I am the midwife.»

Figure 5: Hans Bethe’s, Edward Teller’s and Stanislaw Ulam’s badges at Los
Alamos laboratories.

However, since this work is concerned with Controlled Nuclear Fu-

sion (CNF), let us now put aside the history of thermonuclear weapons to
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jump back to the experiments carried out by Oliphant and his colleagues

at Cambridge University. These scientists were able to estimate the nuclear

cross sections of some fusion reactions, among which the deuterium-tritium

turned out to be the most favourable one, reaching a maximum proba-

bility of occurrence at the astonishing temperature of about 100 keV (~1

billion Kelvin!). Nevertheless, since the D-T reaction releases a consider-

able amount of energy, it holds acceptable that only the high-energy tail

of the particles’ velocity distribution (assumed to be the usual Maxwell-

Boltzmann one) reaches these extreme conditions. Furthermore, as we said,

quantum tunnelling makes it possible to react also for particles which clas-

sically could not. These considerations make the necessary temperature

much lower: in 1944 Enrico Fermi calculated that the reactions would be

able to self-sustain at about 50 million K [17].

At such high temperatures, materials undergo a transition into a state of

matter known as plasma 1. A plasma is a fully ionized gas, which is hence

a very good conductor and is strongly affected by electric and magnetic

fields. If enough kinetic energy is provided to the nuclei (e. g. in the form

of thermal agitation), they become able to overcome the repulsive Coulomb

forces, and hence collide to give rise to fusion events. The main problem,

thus, remained that of holding the plasma together (since it has a natural

tendency to expand, like any other hot gas) without having it touch any

physical wall (since any wall of any material would invariably melt at a

hundred million degrees2). How could a hot plasma be confined then? A

1 The word ’plasma’ comes from Ancient Greek πλασµα, i. e. ’moldable substance’, ’jelly’).
The first plasma was identified in 1879 by the British chemist and physicist sir William
Crookes (1832 – 1919) during some experiments on cathode rays in what is now called a
Crookes tube. Crookes called it ’radiant matter’; the word ’plasma’ was coined by Irving
Langmuir (1881 – 1957) in 1928. The idea came from an analogy with blood, since the
transport of electrons from thermionic filaments reminded Langmuir of “the way blood
plasma carries red and white corpuscles and germs.”

2 Actually, at the low densities of a fusion plasma, this would not be the case. Although the
gas inside the chamber is extremely hot, it is also very rarefied and hence it contains a
small amount of heat altogether. However, touching the walls would cool it down, making
fusion reactions impossible. On the other hand, the walls would eventually warm up and
melt if one tried to keep the plasma hot despite their cooling effect, providing it with
enough energy.
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potential solution was put forward by the american scientist and inventor

Willard Bennett (1903 – 1987). He observed that lightning rods were crushed

when a high current flowed into them due to the Lorentz force that arose,

and in 1934 he proposed that the same effect could be used to focus a

stream of plasma into a thin column [27]. Some years later, this effect was

given the name of pinch effect.

The idea was actually fairly simple: making a current flow into a plasma

cylinder -for instance using two electrodes to apply a driving tension, as in

a neon lamp- would have squeezed it, hence contrasting its expansion. Yet,

it was not enough: this configuration could not prevent the plasma to es-

cape from the ends of the rod. A natural solution to this problem was then

to bend the cylinder into a torus, inducing the current by means of an ex-

ternal magnet. Nowadays, we refer back to this concept as toroidal pinch. It

was further explored in the UK during the 1940s by George Paget Thomson

(1892 – 1975), the son of the Nobel laureate and discoverer of the electron

J. J. Thomson. When the Atomic Energy Research Establishment (AERE) was

formed at Harwell in 1945, Thomson petitioned its director (John Cockcroft)

for funds to build an experimental device; however, his requests were not

satisfied. At that time the material concerning nuclear fusion was not clas-

sified (since practical military uses were not in view; the reader may recall

that the Teller-Ulam design dates to 1951), so Thomson ended up patenting

the concept with the South-African crystallographer Moses Blackman (1908

– 1983) in 1947 [28].

In the meanwhile, World War II had come to an end. Later that year,

Cockcroft organized a meeting at Harwell with the director of the theoret-

ical physics department Klaus Fuchs (1911 – 1988) to discuss Thomson’s

ideas. Nonetheless, the concept did not achieve great popularity at the be-

ginning. Thomson passed along his material to two of his students, Stan

Cousins (?? - ??) and Alan Ware (1924 - 2010), who built a small vacuum

tube at the Imperial College, in which they produced the first (highly un-
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Figure 6: George Paget Thomson (left).
Klaus Fuchs’ and James Tuck’s badges at Los Alamos (center-right).

stable) kiloampere plasma of history [29]. While continuing to work on the

project, Ware and Cousins also involved James Tuck (1910 – 1980), an En-

glish physicist who had been a member of the British delegation to the

Manhattan Project and had worked with Ulam on an unsuccessful collid-

ing beam fusion system at Los Alamos during the war (in 1944), and Peter

Thonemann (1917 - 2017), an Australian theoretical physicist who had come

to Oxford in hope to work on fusion devices as a doctorate. Thonemann

was eventually directed on different nuclear physics topics, but he kept his

interest in the subject. Together with Tuck, he obtained some funding and

arranged to build another small device at the Clarendon Laboratory of Ox-

ford University. However, in 1949 -before the machine was finished- Tuck

received an invitation from Edward Teller to return to Los Alamos to work

on the H-bomb project. He moved back to the US and then to Los Alamos

the next year, while Thonemann remained in the UK and went on with

his research programme on magnetized plasmas [30]. Tuck brought to the

US some informations about the British research on the topic of nuclear

fusion. Thonemann, on the other hand, studied ways to form and sustain

hydrogen plasmas in glass tori. A current was induced into them as into the

secondary of a transformer. These plasmas soon began to show two main

kinds of instabilities, which were called ’kinks’ and ’sausages’ (the form-

ers being more common in toroidal devices, the latters in linear ones). In a

summary of the experimental results obtained so far appeared in the pro-
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ceedings of the 1965 International Atomic Energy Agency (IAEA) conference

held in Culham, Lyman Spitzer described these instabilities as follows [31]:

«On the streak pictures of the linear or toroidal discharges that were obtained in those
early years one saw clearly the diffuse plasma column, which first contracted to a narrow
filament and then started to distort and kink until finally it hit the wall. Under some con-
ditions the plasma was observed to break up into a series of blobs like a string of sausages.
Since the behaviour was exactly what the theory had predicted, it took no very great exper-
imental wisdom to conclude that observations had confirmed theory.»

To tame these instabilities in toroidal devices3, during the following years

two main solution were concocted: the first was to wrap the torus with

a conductive metal sheet, which could counteract plasma movements via

Lenz’s law; the second consisted in encircling the torus with additional

coils, in order to add a toroidal magnetic field to the originally purely

poloidal one. This field had to be switched on before the plasma discharge,

and helped stabilizing the plasma column, while confinement was mainly

provided by the pinch current 4. The application of these ideas resulted in

the construction of stabilized pinches which showed increased confinement

times, and would later develop into the Zero Energy Thermonuclear As-

sembly (ZETA) machine. 5

In the meanwhile, however, informations concerning fusion research

had been classified, and in the UK research sites had been moved from Uni-

versities to safer laboratories. There are at least two reasons for this. The

first is that it was thought that the neutrons produced in fusion reactions

could provide an efficient way to obtain polonium, which could be used

in fission weapons. The second is perhaps to be found in the impression

3 In linear devices, the first attempts made in this concern lead to configurations with a
magnetic field minimum (i. e. magnetic mirrors). These will not be covered in this foreword
for brevity. The interested reader will find further informations in [31]

4 This concept of a stabilizing magnetic field was pushed further and somehow reversed in
the later tokamak desing by Sacharov, where the confinement was mainly provided by a
strong external toroidal field, while a smaller current would provide the stabilizing effect.
See [32]

5 The term ’Zero Energy’ referred to the fact that the machine was intended to produce
fusion reactions, but with no net production of energy (see later).
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Figure 7: Famous picture of a kink instability in a glass torus at Aldermaston,
where the Imperial College team had been moved after fusion research
had been classified.

caused by the fact that, in 1950, Klaus Fuchs was prosecuted and sentenced

to 14 years of imprisonment (after a trial that last less than 90 minutes) for

passing informations on nuclear research to the Soviet Union. This must

have been a particularly embarassing discovery since, before going to Har-

well, Fuchs had also worked as a theoretical physicist at Los Alamos under

Hans Bethe, and had hence passed to the USSR detailed informations about

the US research on both fission and fusion weapons. At the time of his im-

prisonment, it was declared that without his help the USSR would not have

been able to develop its own nuclear weapons so rapidly. Although this

idea has been put into discussion in more recent times, Hans Bethe once

said that Fuchs was the only physicist he knew who had truly changed

history [33].

As we said, Jim Tuck had moved from the UK to the US in 1949 to col-

laborate with the American scientists at Los Alamos. The presence of Tuck

in the US acquainted the American researchers with the British efforts on

nuclear fusion. [34] In the same period, another remarkable event draw the

attention of the Americans to the topic: in 1951, the Argentine President

Juan Perón announced that Ronald Richter (1909 - 1991), an Austrian-born

physicist working in Argentina at the so-called Proyecto Huemul, had suc-

ceeded in producing energy from CNF reactions. In March 1951, the US As-
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sistant Secretary of Station for Inter-American Affairs Edward Miller was

in Argentina to discuss a possible entry of China in the Korean war. How-

ever, the emergency eventually cooled down, and President Perón took the

opportunity to announce, on March 24th during a press conference at Casa

Rosada, that:

«On February 16, 1951, in the atomic energy pilot plant on Huemul Island [...] ther-
monuclear experiments were carried out under conditions of control on a technical scale.»

Soon, according to Perón, energy would have been «sold in half-litre bot-

tles, like milk» .

How could Argentina, an underdeveloped and mainly rural country,

have achieved such a challenging goal? At that time, neither the US nor the

USSR had detonated their first H-bomb yet; thus, it was hardly believable

that Argentina had obtained not only nuclear fusion, but controlled fusion.

It should not come as a surprise, then, that the news was essentially dis-

missed by the scientific community worldwide. Among the others, George

Gamow said [35]:

«It seemed to be 95% pure propaganda, 4¾% thermonuclear reactions on a very small
scale, and the remaining ¼% probably something better.»

Actually, short after Richter’s experiment, a technician had expressed

some doubts on the finding, putting forward the idea that the promising

results obtained could depend on a problem in the measurement instru-

ments. But Richter had refused to re-run the experiment, ordering instead

the dismantling of the reactor, so that a new one could be built, equipped

with a magnetic confinement system. The epilogue of this story is that, after

Perón had been deposed in September 1955, the whole affair turned out to

be false. Richter was arrested on the night of October 4, 1955, on the accuse

of fraud, and spent a short period in jail. A recent estimate places the cost

of the Huemul Project close to $300 million in 2003 dollars [36].

But Perón’s announcement set something in motion, and the research

interest on nuclear fusion suddendly enlivened in other countries as a re-
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Figure 8: Ronald Richter and what remains today of the 40-foot-high concrete
bunker that housed Richter’s experiment.

sponse to the Argentinian news. In 1951, Jim Tuck, the same scientist who

had introduced the z-pinch concept at Los Alamos, developed a new con-

finement configuration under the codename "Project Sherwood". He must

have had a bizarre sense of humour: the project name was indeed a joke on

his own name and Robin Hood’s fellow Friar Tuck, while the device was

called Perhapsatron due to the fact that it could eventually produce fusion,

perhaps. In the same year, the astrophysicist Lyman Spitzer (1914 – 1997)

proposed the Stellarator concept, and "Project Matterhorn" was born (which

was moved to Princeton after declassification, becoming the first seed of to-

day’s Princeton Plasma Physics Laboratory (PPPL)). Eventually, in the US a

classified programme was launched in 1952-1953, with several groups work-

ing on different magnetic confinement solutions. In the UK, the repeated

requests for funding of a larger machine were finally accepted, leading to

the construction of the ZETA machine, considered to be the first truly large

scale fusion experiment. The news of the building of ZETA, in turn, caused

the US and even the USSR to reinforce their research programmes in order

not to be left behind by the UK.

We will come back to ZETA and to Spitzer’s Stellarator later. Now, it’s

time to turn our attention to one of the most important actors of this brief

chronicle, which has been put aside until now: the USSR.
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Figure 9: Lyman Spitzer and the Model-A Stellarator, exhibited at Geneva 1958

(left).
The ZETA device at Harwell (right).

The history of nuclear fusion in the Soviet Union set off with a curious

anecdote. Oleg Alexandrovich Lavrentiev (1926 – 2011) was a volunteer

during the war. He became a sergeant of the Red Army, and after the war he

was moved to the Sakhalin Military District. When Oleg was just 15 he had

read a book entitled "Introduction to Nuclear Physics", becoming interested

in the topic. So, during the military service, he used to spend his free time

studying technical and scientifical books from the army’s library; with his

monthly allowance he also subscribed to the journal Uspekhi Fizicheskikh

Nauk (Advances in Physical Science). In 1948, he was asked to prepare a

lecture on nuclear physics. About this assignment, he said [37]:

«I had a few free days to prepare a lecture. During that period I rethought all the knowl-
edge I’d gained so far. As a result, I’ve found solutions to the problems I had been battling
with for years.»

He decided to write a letter to the Central Committee of the Communist

Party of the Soviet Union, asserting that he knew ’the secret of the hydrogen

bomb’. An officer was sent from the Kremlin to interrogate him, and an or-

der came to create for him an atmosphere where he could work. Lavrentiev

wrote his first article, which was sent to the Central Committee via secret

mail in 1950. In the first part of his work, he suggested a possible implemen-

tation of a hydrogen bomb, based on lithium-6 deuteride; in the second, he



historical overview 17

discussed the exploitation of deuterium nuclei, electrostatically confined, to

generate electricity. His letter was sent from Sakhalin island on July 29. By

August 18, Andrej Sacharov (1921 – 1989) had reviewed it. Despite some

doubts on the design proposed by Lavrentiev, he wrote that [32]:

«The author formulates a very important and not necessarily hopeless problem. [...] At
this point, we must not overlook the creative initiative of the author.»

In his review, Andrej Sacharov mentioned a number of problems that

should have been addressed and corrected in the prototypical design of

Lavrentiev. However, Lavrentiev’s letter prompted Sacharov to the idea of

exploiting a magnetic field to thermally insulate the hot plasma [38]:

«The first vague ideas on magnetic thermal insulation started to form, while reading his
letter and writing the referee report.»

A charged particle in a strong magnetic field moves along a helical trajec-

tory around the field lines. The width of the helix is related to the Larmor

radius associated to the particle’s motion (i. e. less than 1cm for deuterons

and less than 1mm for electrons for a plasma with B = 5T and Tp = 50keV).

After a collision -assuming straight field lines- the trajectory of a particle is

deviated of a length which is less or equal than one Larmor radius; thus

particles diffusion across the magnetic field is greatly reduced, and so is the

heat transfer to the reactor walls.

By the time Sacharov’s review was signed, Lavrentiev had been demobi-

lized from the army and had enrolled in Moscow University. He also ob-

tained an accelerated graduation from the University, and shortly after he

was invited to work at the Kharkiv Physico-Technical Institute, in today’s

Ucraine, where he remained for the rest of his life. In 1981-1985, a toroidal

magnetic trap built at Kharkiv was named ATOLL (Anti-mirror TOroidal

Lavrentiev trap, Lovushka in Russian) in his honour. In October 1950, An-

drej Sacharov and Igor Tamm (1895 – 1971) completed the first evaluations

on a Magnetic Thermonuclear Reactor (MTR). We already mentioned that,

in order to avoid end-losses in linear pinch devices, one can bend a linear
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device into a torus. Particle drifts arise due to the curvature of the mag-

netic field lines: to compensate this effect, Sacharov proposed to induce a

current in the plasma, so that the magnetic field lines would bend into he-

lixes, forming a system of nested magnetic surfaces. Moreover, to keep the

plasma in equilibrium, he suggested to house it in a copper vessel; and so,

interestingly, at the end the Soviets came up with a design which beared

many similarities to the one proposed by Thonemann and the others in the

UK a few years earlier [32], despite having followed a completely different

route6. In 1957, this configuration was baptized tokamak 7.

Figure 10: Oleg Lavrentiev, Andrej Sacharov and Igor Tamm.

6 The main difference between a tokamak and a toroidal pinch machine is in the ratio of
toroidal field to plasma current/poloidal field. In a toroidal pinch the external toroidal
field is much weaker than the poloidal field and only enters the outer layer of the plasma;
as opposite, in a tokamak the toroidal field is about 10 times stronger than the poloidal
one. As Lev Artsimovich put it [39]: «The longitudinal field intensity must be many times
greater than the intensity of the azimuthal field produced by the current. This constitutes the prin-
cipal difference between tokamak devices and systems with relatively weak longitudinal fields, such
as the well-known English Zeta device» . This idea is well summarized by the concept of ro-
tational transform (ι, i. e. the number of poloidal transits of a field line for a single toroidal
transit): magnetic field lines have to be ’twisted’ in order to obtain stable plasma config-
urations. In toroidal pinches and tokamaks, this is obtained by inducing a current in the
plasma; in a stellarator configuration, instead, a rotational transform is obtained ’statically’
by modifying the geometry of the windings. To achieve a stable plasma configuration, the
safety factor q (i. e. the inverse of ι) must be greater than one, a condition known as the
Kruskal-Shafranov limit. For instance, in ZETA q had a value of about 1/3. This condition
yields a limit on the plasma current density; hence, a higher safety factor was obtained in
tokamaks by reducing the pinch current. This, in turn, meant that ohmic heating would
not be enough anymore and paved the way to different additional heating methods.

7 The term tokamak was coined by Golovin in 1957, as an acronym for the Russian
toroidal’naya kamera s magnitnymi katushkami — toroidal chamber with magnetic coils. It
became of common use after 1958 [32]. In the following, for brevity, we will use it also for
tokamak-like experiments built before 1957.
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In January 1951, Igor Kurchatov (1903 – 1960), the scientist who had su-

pervised the building of the Soviet atomic bomb, organized a workshop

on the MTR. In the following months, while the Russian government was

evaluating the idea of starting a more extensive research programme on the

topic, something unexpected happened [32]:

«In mid-April, the Minister of the Electric Industry D V Efremov suddenly stormed into
Kurchatov’s study with a magazine in his hand, which reported successful experiments by
someone called Richter in Argentina, who had detected neutrons in gas discharge.»

Kurchatov communicated the news to Lavrentiy Beriya8, and they sug-

gested to put together a CNF research team, headed by Lev Artsimovich

(1909 – 1973) and with Michail Leontovich (1903 – 1981) at the head of the

theoretical division9. An official resolution was signed by Stalin on May 5,

1951. After some years of feverish investigation, a pilot tokamak, still with a

ceramic chamber, was finally built in 1955. It was named Tor s Magnitnym

Polem (TMP) (Russian for "Torus with a Magnetic Field"). We will come back

to TMP later.

In the meanwhile, cold war had set out, and the danger of an atomic

conflict seemed closer than ever. After the drop of Ivy Mike performed by

the US in 1952, the USSR tested, just one year later, a H-bomb hundreds

of times more powerful. In 1953, the doomsday clock reached its closest ap-

proach ever to midnight: according to the Bulletin of the Atomic Scientists,

humanity was only 2 minutes away from a nuclear catastrophe 10.

8 After the Klaus Fuchs affair and the destruction of Nagasaki and Hiroshima, Stalin had or-
dered Kurchatov to produce an atomic bomb, and Beriya had been put in direct command
of the atomic project, which had been assigned the codename Arzamas-16. However, the
scientists involved in the project were instructed to test any information coming from the
intelligence by themselves, using whatever the spies were able to discover as a benchmark
for their own work.

9 Vitalii Shafranov [32] reports a funny story about Leontovich being included in the CNF
programme: «As legend has it, one of Beriya’s assistants started to murmur into his ear that
Leontovich was a security risk. Beriya replied with a pronounced Georgian accent: "Eef you kepp
an aye on heem, he do no hemm" (If you keep an eye on him, he will do no harm)»

10 Sadly, this shameful goal was achieved again this year. The site of the journal reports [40]:
«In 2017, we saw reckless language in the nuclear realm heat up already dangerous situations and re-
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The atmosphere of that season is well summarised by the famous ’Chance

for Peace’ speech given by Dwight Eisenhower (1890 - 1969) to the General

Assembly of the United Nations on 8 December 1953 [41, 42]:

«I feel impelled to speak today in a language that in a sense is new–one which I, who
have spent so much of my life in the military profession, would have preferred never to use.
That new language is the language of atomic warfare. [...]

Today, the United States’ stockpile of atomic weapons, which, of course, increases daily,
exceeds by many times the explosive equivalent of the total of all bombs and all shells that
came from every plane and every gun in every theatre of war in all of the years of World
War II.
A single air group, whether afloat or land-based, can now deliver to any reachable target a
destructive cargo exceeding in power all the bombs that fell on Britain in all of World War
II. [...]

But the dread secret, and the fearful engines of atomic might, are not ours alone.
In the first place, the secret is possessed by our friends and allies, Great Britain and Canada,
whose scientific genius made a tremendous contribution to our original discoveries, and the
designs of atomic bombs.
The secret is also known by the Soviet Union. [...]

The free world, at least dimly aware of these facts, has naturally embarked on a large
program of warning and defense systems. That program will be accelerated and expanded.
But let no one think that the expenditure of vast sums for weapons and systems of defense
can guarantee absolute safety for the cities and citizens of any nation. The awful arithmetic
of the atomic bomb does not permit of any such easy solution.»

At that time, Dwight Eisenhower had just taken office, succeeding Henry

Truman, while the Korean War – a bloody conflict that had last for 3 years

– was coming to an end. It appeared clearly that the US monopoly over

nuclear weaponry was doomed to end soon. In this view, Stalin’s death, on

5 March 1953, provided the opportunity for rapprochement with the Soviet

Union. This was made through the proposal of an International Meeting

to discuss viable pacific uses of atomic energy. This conference should have

learned that minimizing evidence-based assessments regarding climate and other global challenges
does not lead to better public policies.
Although the Bulletin of the Atomic Scientists focuses on nuclear risk, climate change, and emerging
technologies, the nuclear landscape takes center stage in this year’s Clock statement. Major nuclear
actors are on the cusp of a new arms race, one that will be very expensive and will increase the
likelihood of accidents and misperceptions. Across the globe, nuclear weapons are poised to become
more rather than less usable because of nations’ investments in their nuclear arsenals. This is a
concern that the Bulletin has been highlighting for some time, but momentum toward this new
reality is increasing.»
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Figure 11: Dwight Eisenhower (left).
A commemorative stamp with a portrait of Igor Kurchatov (right).

been followed by the creation of an International Agency that could become

a reference point for the countries collaborating in the project [41]:

«It is not enough to take this weapon out of the hands of the soldiers. It must be put into
the hands of those who will know how to strip its military casing and adapt it to the arts
of peace. [...]

The United States knows that peaceful power from atomic energy is no dream of the
future. That capability, already proved, is here–now–today. Who can doubt, if the entire
body of the world’s scientists and engineers had adequate amounts of fissionable material
with which to test and develop their ideas, that this capability would rapidly be transformed
into universal, efficient, and economic usage.
The Governments principally involved, to the extent permitted by elementary prudence,
to begin now and continue to make joint contributions from their stockpiles of normal
uranium and fissionable materials to an International Atomic Energy Agency. We would
expect that such an agency would be set up under the aegis of the United Nations. [...]

Most recently, we have received from the Soviet Union what is in effect an expression
of willingness to hold a Four Power Meeting. Along with our allies, Great Britain and
France, we were pleased to see that this note did not contain the unacceptable preconditions
previously put forward.
As you already know from our joint Bermuda communique, the United States, Great
Britain, and France have agreed promptly to meet with the Soviet Union.
The Government of the United States approaches this conference with hopeful sincerity. We
will bend every effort of our minds to the single purpose of emerging from that conference
with tangible results toward peace–the only true way of lessening international tension11.»

In 1955, some attempts were made in this direction. In the USSR, Kur-

chatov convened an All-Union meeting to discuss the progress in fusion re-

11 On the long distance, this speech could perhaps be seen as a propaganda manouver in
the wider context of Cold War, aimed at both containing communism’s diffusion and
reassuring European allies about the risks of a possible nuclear war in Europe.
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search obtained all around the country. Yet classified, this meeting was open

to a considerably wider public with respect to the previous ones. Later that

year, on the 18th of July, a summit was held in Geneva between the leaders

of the "Big Four" (USA, URSS, UK and France) which aimed at reducing

international tension. One month later, from the 8th to the 20th of August,

the first Atoms for Peace conference was organized –again in Geneva– by the

United Nations.

This conference shed a light of hope on the potential benefits of a peace-

ful cooperation for the exploitation of atomic energy. It was the biggest sci-

entific meeting the world had ever seen. More than 1000 publications were

presented, signifying the official birth of the new field of research of nuclear

technologies. Moreover, it was the first time Soviet scientists could take part

in a scientific meeting beyond the Iron Curtain. In the opening speech, the

chair of the conference, the indian physicist Homi Bhabha, predicted [43]:

«A method will be found for liberating fusion energy in a controlled manner within the
next two decades.»

In the general enthusiasm, France published a technology that made pos-

sible to reprocess nuclear fuel to obtain polonium, and the URSS accepted

to participate in the statute of the forthcoming IAEA.

Figure 12: Commemorative stamp of 1955 Geneva Conference.

At that time, the scientific community were generally confident that fu-

sion could be made also for energy production purposes. In the UK, John
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Lawson (1923 – 2008) wrote an article in 1955
12 proposing his famous cri-

terion, which is still used today – in the slightly different form of the triple

product criterion – to quantify the conditions needed for a reactor to reach

ignition (i. e. a regime of self-sustaining nuclear fusion reactions; see sec-

tion 2.1) [44]. But confining a plasma proved to be a task harder than it

might seem, due to the presence of instabilities that were poorly under-

stood at the time. Both theoretical and technical problems arose, making

room for a widespread sense of pessimism. The need for a deeper under-

standing of the mechanisms underlying nuclear fusion and plasma physics

was calling for the declassification of the CNF programme.

In April 1956, as a first step towards coperation in the CNF field, Igor

Kurchatov (who was an advocate of nuclear disarmament and open fu-

sion research) visited Great Britain (as part of a delegation headed by the

Soviet leaders Nikita Khrushchev and Nikolai Bulganin) and gave a lec-

ture at AERE, Harwell, "On the feasibility of the thermonuclear reaction in

gas discharge". The lecture, held on April 25, summarised the main results

obtained by the soviet researches in pulsed devices now known as pinches.

From Kurchatov’s speech, it was clear that US, UK and USSR were all work-

ing on similar solutions to tame nuclear fusion, and were battling with sim-

ilar problems. At this point, with the Soviets at the same development level

in fusion research and willing to share their knowledge, it was clear that

declassification would have been of great benefit for scientists on both sides

of the Atlantic. Kurchatov also warned his British colleagues that there ex-

isted the possibility of getting neutrons production – i. e. fusion reactions –

which was not of thermonuclear origin (which was exactly what happened

a few years later in the ZETA affair) 13 .

Shortly after, for the first time, a delegation from abroad – made by mem-

bers of the Swedish Academy of Sciences – was allowed to visit the Kur-

12 The article was declassified in 1957.
13 Already on the 4th July 1952, the group of Nikolai Filippov had detected neutrons in a

linear pinch experiment. Further checks, requested by Lev Artsimovich, showed that these
neutrons were not thermonuclear in origin at all, and that pinch instabilities did not allow
the temperature to increase with the plasma current [32].
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chatov Institute. In turn, Hannes Alfvén (1908 – 1995) invited Artsimovich

and Golovin to Stockholm for an astrophysics conference, where they gave

lectures implicitly related to CNF issues.

Meanwhile, in the UK, the design of the ZETA had been finalized (in

early 1956), and the machine was under construction. Research in the field

of pinch devices had expanded rapidly in the UK, and by 1954 Thomson

had started pressing the government for larger funding, which was even-

tually granted by the government. When its operation started in summer

1957, with its aluminum torus of more than 3 meters diameter and a fore-

seen plasma current of 100,000 A (which was soon raised to 900,000 A),

ZETA was the biggest fusion device in the world. During the first weeks of

experiments, after the current had been raised up to 200,000 A and some

deuterium had been mixed to the customary hydrogen gas, many neutrons

per pulse were recorded, causing great excitation among the scientists. But

the way the measurements would have extrapolated to ’commercial size’

reactors strongly depended on the answer to one fundamental question:

were these neutrons generated by thermonuclear reactions? At that time, the

available methods to measure bulk plasma temperature were still rudimen-

tary, making the answer to this question particularly doubtful. From the

doppler shift in the lines of some impurities seen in spectrographic mea-

surements, the scientists calculated a plasma temperature of 1 to 5 million

K, compatible with the amount of neutrons detected. It seemed that the

dream of producing energy out of water had finally been realized. Even

though the experiment was top-secret, news of its existence (and of some

fabulous results achieved) eventually leaked, and the press started to put

Harwell under pressure, asking for more details. In the meanwhile, US and

UK had signed an information-sharing agreement, and scientists from both

sides were allowed to visit their colleagues’ laboratories. A US delegation,

including Spitzer, Tuck and Stirling Colgate (physics professor and heir to

the Colgate toothpaste family fortune), visited ZETA. After an initial enthu-



historical overview 25

siasm for the results that were showed to them, on his way back to America

Spitzer noted that something were wrong with the neutrons measurements,

as the pulses were too short for the plasma to reach such high temperatures.

By taking into accoung the well-known relation between temperature and

plasma conductivity, also Colgate reached the same conclusion: the temper-

ature measurements were wrong.

Figure 13: Queen Elizabeth II visits the ZETA facility (still under construction)
guided by John Cockcroft (left).
Cockcroft is interviewed in front of ZETA in 1958. During this interview,
Cockcroft assessed that he was 90% sure that the measured neutrons
were thermonuclear (right).

Nevertheless, on 25 January 1958, the results obtained by ZETA were pub-

lished on Nature, along with the data coming from other British and Amer-

ican devices. The paper did not mention whether the neutrons’ origin was

actually thermonuclear or not. But John Cockcroft was less cautious, and

during a press conference, after being asked several times by the journal-

ists, he declared that he was «90% certain» that this was the case. Such a

strong statement from a Nobel prize winning scientist was welcomed with

huge enthusiasm by the media, and ZETA ended up on all the newspapers,

considered a scientific breakthrough superior even to the Russian Sputnik

mission. Plans were made to build a follow-on machine, and other countries

announced the construction of machines similar to the British one.

But not everyone was convinced. We already mentioned that Spitzer was

skeptical about the results, and so were Colgate, Furth and other American
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Figure 14: Newspaper articles concerning ZETA.

scientists. Lev Artsimovich’s declaration, after reading the Nature issue, was

just «Chush sobachi!» (bulls**t in Russian) [45]. After a series of experiments,

it was found that the neutrons were due – as Kurchatov had pointed earlier

– to strong electrical potentials generated by plasmas instabilities. Protons

were accelerated by these potentials, and then collided with the neutrons

already present in the plasma or impacted the walls of the machine, which

in turn emitted neutrons via neutron spallation. On 16 May 1958, almost 6

months after his initial declaration, Cockcroft had to publish an embarass-

ing retraction, and plans to build a bigger machine were abandoned [46].

However, every cloud has a silver lining: experimental activity on ZETA

gave indeed many major contributions to plasma science, e. g. with the

development of the Thomson scattering technique, which is still used to-

day; the same technique was used to assess the results obtained at the T-3

Tokamak after the 1968 Novosibirsk conference (see later). Moreover, it was

studying some results obtained with ZETA in 1965 that plasma scientists

came up with the Reversed Field Pinch (RFP) concept.

1958 was the year of declassification. As we said, UK and US had re-

leased a large amount of data concerning several experiments (British ZETA

and Sceptre and Los Alamos’ Perhapsatron S-3, Columbus II and Colum-

bus S-2) in January. Some time later, the Kurchatov Institute’s papers on CNF

were also declassified and collected in four green volumes edited by Leon-
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tovich and entitled Plasma Physics and Problems of Controlled Thermonuclear

Reactions [32]. In September, the goal of declassification was definitively

accomplished with the Second United Nations International Conference on the

Peaceful Uses of Atomic Energy, again in Geneva, at the beginning of which

fusion was formally declared declassified by the USA and the UK.

Figure 15: A picture from Geneva 1958 "Atoms for Peace" conference (left).
The parallel exhibition of nuclear reactor prototypes at 1958 Atoms for
Peace Conference (right).

It was a huge event: 5000 scientists from 67 countries participated to the

meeting, held in the Palais des Nations, while the first ’nuclear fair’ of his-

tory took place in an exhibition hall purposedly built to house actual fusion

experiments brought along from 13 different countries. 900 journalists from

all over the world, 3651 observers from the industry and even more curious

auditors took part in the meeting [47]. 105 papers were presented sum-

marising the main results obtained in the field of CNF in the USSR, USA,

Uk, Germany and other countries [48]. Lev Artsimovich, who called this

conference a «fair of ideas» [32], said in his speech [49]:

«A most important factor in ensuring success in these investigations is the continuation
and further development of the international cooperation initiated by our conference.»

Scientists at the conference found that they had discovered similar things,

although independently and in different countries, and their works shared

many common points. Edward Teller said [49]:

«It is remarkable how closely parallel the developments in the different countries are and
this, of course, is due to the fact that we all live in the same world and obey the same laws
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of nature. [...] It is wonderful that over a large and important area of research we can now
all talk and work together freely. I hope that this spirit of cooperation will endure, that it
will be generally exercised throughout the world in this field and that be extended also to
other fields.»

Figure 16: Afghan commemorative stamp of 1958 conference (left).
Lev Artsimovich on a 1974 Russian stamp (right).

But all that glitters is not gold. Teller said also that [43] fusion was at a

stage «similar to the stage at which flying was about 100 years ago» : technical

difficulties were likely to make fusion produced energy «so costly that an

economic exploitation of controlled thermonuclear reactions may not turn out to be

possible before the end of the twentieth century» , showing how scientists at the

meeting were far less optimistic than 3 years earlier.

At that time, the magnetic configuration under examination were essen-

tially of two different kinds: linear devices and toroidal devices. Moreover,

these machinese could be operated in a pulsed fashion or in steady state.

The already cited Lawson criterion [44] had set a lower bound for the prod-

uct of density and confinement time: pulsed machines, i. e. with short con-

finement times, had to work at higher densities than steady-state ones. Lin-

ear devices were theoretically simpler and exhibited the best performances

in terms of plasma temperature rise. Unfortunately, they also suffered from

losses at the ends – yielding shorter confinement times – and from various

plasma instabilities. In the end, they were judged unsuitable for a com-

mercial reactor, and scientists’ attention turned to toroidal machines [17].

However, it was found that plasma transport across magnetic field lines
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was much higher than expected. One of the main problems in CNF was

the so called Bohm diffusion. The results obtained with the first, lossy pro-

totypes of MTR showed that the plasma transport evolved according to a

somewhat empirical scaling observed by David Bohm (1917 – 1992) and

others while studying isotopes separation by means of magnetic arcs in

1949 [50]. According to this scaling, the diffusion coefficient was inversely

proportional to the magnetic field and linear with the plasma temperature.

In other words, confinement worsened when warming the plasma. This

model predicted loss rates much higher than those of the classical one,

which yielded – by random walk arguments – a diffusion coefficient which

scaled as 1/B2 (meaning that a small increase in the field would have led to

a much longer confinement time). Should Bohm’s model be correct, build-

ing useful magnetic confinement reactors would not be possible. The initial

agreement of fusion experiment results with this model led to a stagnation

of fusion research during the 60s.

As we said, experiments on what later became the tokamak configuration

had started in the USSR in 1951, with tori made of glass, porcelain or metal

with insulating inserts. The largest of these machines was the already men-

tioned TMP. Just to give a rough idea, TMP had a major radius of 0.8 m and a

minor radius of 13 cm, with a toroidal magnetic field of 1.5 T and a plasma

current of 250 kA [48]. After TMP, many other devices of this kind were

built. At the end of 1958, T-1 was the first reactor with a fully metallic vac-

uum chamber – with no insulation inserts – and can be considered the first

actual tokamak. T-2 was built one year later with the purpose of exploring

ways to mitigate radiation losses; it had an inner vessel made of corrugated

metal which could be heated up to 550°C in order to release trapped gases.

TO-1 featured a feedback system for the suppression of MHD instabilities.

Experiments on these initial prototypes instilled some hope in the scientists:

the confinement did not worsen with the rise of plasma temperature, and

experimentally measured values of the energy confinement times exceeded

those predicted by the Bohm’s formula by an order of magnitude. These
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results were later announced in the 2nd IAEA Conference held in Culham

in 1965 by Artsimovich, who reported [32]:

«The confinement time in our experiments is almost 10 times the Bohm limit.»

Figure 17: T1, the first tokamak in history, built at the Kurchatov Institute in
Moscow in 1958. R = 0.63 m, a = 0.17 m, B = 1.5 T , Ip = 100 kA.
Copper vacuum vessel, wihout gaps.

But other scientists – notably Spitzer – dismissed these results. In his

view, the Bohm limit could still be valid, and the measurements made were

not completely reliable. In the already cited review [31] we find:

«The chief problem of toroidal devices is the anomalous loss of particles across the mag-
netic field, sometimes called "pumpout". The evidence presented at this Conference on the
subject of these losses does not add up to an entirely consistent picture. On the other hand,
most of the groups working with toroidal plasmas have found that anomalous particle loss
is a rather general characteristic of these plasmas. Measurements of the plasma density as a
function of time are sometimes not a very reliable indication of plasma loss. When particles
escape from a plasma and go to the wall on the millisecond time scale that is customary
in most toroidal devices, there is ample time for the particles to return to the discharge
and become reionized. To evaluate the intrinsic confinement time one must correct for this
recycling by particles that leave the discharge, become neutralized at the walls, and then
return to the discharge.
Different groups have used different methods in correcting for this recycling. [...]
These studies all indicate that the diffusion rate agrees in general order of magnitude with
the simple diffusion formula given many years ago by Bohm. In the largest Tokamak device
the losses reported are less that this theoretical value by about an order of magnitude; in
the Model C stellarator the loss rate about equals the Bohm value, while in the smaller
stellarators the loss rate was about three times the Bohm formula. I would like to emphasize
not the differences between the two groups, as regards the precise ratio of the recycling
loss to the Bohm formula, but rather the general agreement that anomalous particle loss is
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present and that it is roughly within an order of magnitude of that predicted by the Bohm
formula.»

There is no other reference in the rest of the article to the results obtained

with the tokamak configuration in terms of confinement time. Moving on

to the advancements in additional heating systems, Spitzer dismisses the

issue saying that «the theoretical explanation of pumpout is still a mystery» .

Incidentally, back in 1958 Spitzer’s Stellarator had been considered one of

the most interesting prototypes presented during the 1958 Geneva meeting,

though the gist of this design was a pretty simple concept. Bending the

magnetic field into a torus produces a B gradient which causes the negative

charged electrons and the positive nuclei to drift in opposite directions,

producing large voltages which in turn cause the plasma ring to expand

and eventually touch the walls of the reactor. To compensate this effect,

in a tokamak a large current is induced in the plasma, which makes the

magnetic field lines twist around the torus: in this way, on the external side

of the torus -called Low Field Side (LFS)- due to the drift effect the particles

move away from the center of the plasma column, while on the inner side

-the High Field Side (HFS)- they move towards it. In a stellarator, this issue is

addressed in a different, purely geometric way. The first stellarator, called

’figure-8’, had one end flipped with respect to the other. In this way, the

drift would reverse its direction every half orbit. In 1958, Spitzer described

his design as follows [51]:

«Basically, the confinement scheme in the stellarator consists of modifying the magnetic
field so that a single line of force, followed indefinitely, generates not a single circle but
rather an entire toroidal surface, called a "magnetic surface".[...]
To produce a rotational transform in a vacuum field it suffices to twist a torus out of a
single plane. Virtually any such distortion will remove the degeneracy of the ideal torus and
produce a rotational transform. The simplest such system is the figure-eight, historically
the first geometry proposed for a stellarator.[...]
A rotational transform angle may be produced in a variety of other ways. When a plasma
current is flowing around the simple torus14, a rotational transform appears, despite its
absence in the vacuum field. If steady-state confinement is envisaged, however, a rotational
transform must be present in the vacuum field. The most important alternative method

14 i. e. in a tokamak
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for producing such a rotational transform is the use of a transverse magnetic field, whose
direction rotates with distance along the magnetic axis15.»

Figure 18: A scheme of the figure-8 stellarator [51].

The stellarator was hence a stationary magnetic system, with the possibil-

ity of steady-state operation, ideal for a MTR 16. After 1958, the Russian also

considered the idea of switching to this new concept. In his already cited

chronicle of CNF development in the USSR [32], Vitalii Shafranov reports:

«The stellarator affected our research too:
(1) Realizing how important L Spitzer’s proposal was, I V Kurchatov prodded N A

Yavlinski to change to the stellarator direction instead of continuing the construction of the
new tokamak (this was exactly the T-3 tokamak). N A Yavlinski asked S I Braginski and
myself to compare this tokamak (this term was not yet in use and here we resort to it for
brevity only) with the stellarator. We gave roughly the following arguments in favor of the
tokamak. The minor chamber radius is greater in the tokamak than in stellarator of equal
chamber length; hence the walls have a smaller effect on the discharge. Further, if heating
is achieved by current only (no other methods were available at the time) the advantage lies
with the systems with a higher current. This approach helped the tokamak line to survive
at the time.

(2) The sword of Damocles of the CNF was the enhanced Bohm diffusion which seemed
universal and which was detected both on the ‘figure of 8’ stellarator and later on the
combined 2- and 3-thread stellarator C (with a race track shape). This diffusion caused
depression among the researchers. However, theoreticians who tried to decipher the mecha-
nism of this diffusion and ‘sifted’ a plethora of potential instabilities were able to develop
the theory of turbulence and thereby facilitated the progress in plasma physics.

(3) The tokamak – stellarator competition intensified the work on CNF.»

15 See also note 6

16 Incidentally, this is one of the main arguments supporting stellarator research today as
well.
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But, as we have already seen, the results obtained by the Soviets with

the tokamak devices in the 60s were extremely promising, as it seemed that

they had finally succeeded in getting rid of the Bohm diffusion. The next

breakthrough came with the Third International Conference on the Physics

of Hot Plasma and Nuclear Fusion (also called "Plasma Olympics" [52]),

held in 1968 at Novosibirsk, in Siberia. During this meeting, it was reported

by the Kurchatov team that in the T-3 tokamak a plasma temperature of 1

keV (i. e. 10 million degrees) and a confinement time of 10 ms (an order of

magnitude greater than in any other fusion machine) had been achieved [32,

52]. Again, the scientific community looked at these results with a mixture

of excitation, suspect and disbelief: had those numbers been true, fusion

would have been a huge step closer. But the temperature measurements

had been obtained in a rather indirect manner [17]. To remove any doubt,

Lev Artsimovich made an unexpected move: in the darkest hour of the Cold

War, he proposed to his colleague Sebastian "Bas" Pease (1922 - 2004), the

director of the Culham Laboratory for Plasma Physics and Nuclear Fusion,

that a delegation of British scientsts came to the Kurchatov Institute to mea-

sure themselves the plasma temperature of T-3. In the UK, indeed, a new

laser scattering technique (the Thomson scattering) had been developed

and applied to fusion plasmas over the last years17.

The UKAEA team was put together less than 6 months after the confer-

ence, and was composed by Nicol Peacock, a renowned spectroscopist, Pe-

ter Wilcock, a technical innovator, the laser scattering pioneer Mike Forrest

and the 27 years old Derek Robinson, a theoretician with some laser scat-

tering experience, plus the technician Harry Jones. They were nicknamed

"The Culham Five" [52].

17 The reader might recall that the ZETA ’missed fusion’ affair was caused by a misleading
plasma temperature measurement. This explains why, in the aftermath, the British had
put so much effort in developing new measurement techniques. As Pease himself wrote
on the New Scientist [29]: «The experiment [ZETA] was perhaps one of the more useful of the
pioneering experiments with controlled thermonuclear research.[...] Zeta also provided a major stim-
ulus in diagnostic development: for example, the use of infrared emission and scattering techniques;
and in engineering techniques, for example the use of a continuous stainless-steel bellows vacuum
chamber.»
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Figure 19: The "Culham five": from left to right, Jones, Peacock, Forrest, Robinson
and Wilcock (left).
A cartoon of the "Culham five" expedition to Russia, made by Boris
Kadomtsev (1928-1998), who later became the head of the Kurchatov
Institute(right).

A first, one week expedition was arranged for Forrest and Wilcock to

check what was needed. After that, a semi-permanent base in Russia was

set up, and 5 tonnes of equipment were brought to it [52, 53]. By August

1969, under the constant surveillance of the KGB, the team had measured

plasma temperature in 88 shots of the T-3 tokamak. The announcement

made by Lev Artsimovich at Novosibirsk was confirmed: in the majority

of the cases, the temperatures were in the 10 million Kelvin range. The

team communicated the results to Culham, which in turn passed them to

Washington. Finally, the results were published on Nature in November

1969 [54]18.

Ten years later, an article on the New Scientists reported [39]:

«The world fusion community was slow to accept that with the T3 tokamak the Soviet
Union had indeed come up with a system that took the wind out of MHD instabilities.[...]
Only when a team of specialists in plasma diagnostics went to the USSR from Culham Lab-
oratory, taking with it a considerable array of laser equipment to try out a brand-new laser
diagnostic technique, were the world’s plasma physicists, including the Soviets, convinced

18 Dr. Forrest recently commented on his experience [52]: «Forty years later we feel more than a
tinge of pride in our 1969 achievement. After all, we had helped to get tokamaks recognized as the
way forward for confined fusion research and, ultimately, to ITER.» However, his main interest
was in laser diagnostics; in fact, he also said: [55]: «But the important thing was not the
Russian thing, really. Developing the first good scattering technique is something I’d be happy to
have on my gravestone. It was the first scientific experiment of its kind.»
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that the T3 plasma was as hot as the first crude measurements suggested. The Culham team
reported its work in Nature in 1969 (vol 224, p 448), sparking a veritable stampede into
tokamak construction around the world.»

The success of T-3 boosted the efforts in CNF research; after 1969,

tokamaks were built in many other countries around the world. In 1970,

the Model C stellarator at PPPL (the first large-scale stellarator ever built)

was converted to the Symmetrical Tokamak (ST), which confirmed the

results of T-3.

If, on one hand, the new experiments confirmed that the confinement

scaled with the machine size, on the other plasma resistivity was known to

be proportional to T−3/2 [56], while the current density was limited by the

Kruskal-Shafranov limit (see note 6). For this reason, soon ohmic heating

was not enough anymore; thus, the next step was to explore different ways

to heat up the plasma. Among the others, the tokamak T-10 (R = 1.5 m,

a = 0.36 m, Ip 6 0.65 MA, Bt 6 5 T ) was used in Russia to explore the

possibility of using Electron Cyclotron Resonance Heating (ECRH) [57]. The

experiments started in 1975, and the machine achieved an electron temper-

ature Te = 10 keV [48]. In the US, ST was followed by the Princeton Large

Torus (PLT) in 1975, basically a copy of T-10 equipped with Neutral Beam

Injector (NBI) and Lower Hybrid Resonance Heating (LHRH) systems. This

machine was built «to give a clear indication whether the tokamak concept plus

auxiliary heating can form a basis for a future fusion reactor» [58]. It was an

incredibly successful experiment, the first to achieve 1 MA plasma current.

With its NBI system, PLT reached a record ion temperature of 60 million

degrees in 1978, superior to the theoretical threshold for plasma ignition

(about 4keV)19 [58]. Peak temperatures of 8 keV were reported [32, 59].

Later on, PLT was also the first tokamak to peform a discharge in which

19 To celebrate this achievement, in August 1978 the Russian physicist Katerina Razumova
presented the director of PPPL, Mel Gottlieb, with a Russian Firebird. It is believed that a
blazing feather from this Firebird can be used to make a dream come true.
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Figure 20: T-10 (left).
PLT (right).

the plasma current was driven entirely by LH radiofrequency waves (in

1981, see [58]).

Figure 21: The Russian Firebird presented by Katerina Razumova after PLT had
reached 60 million degrees (right).

From the theoretical point of view, the development of neoclassical trans-

port theory led to a deeper understanding of collisional transport in toroidal

geometry. One of the main consequences was the discovery of the non-

inductive bootstrap current, which paved the way to the thriving opportunity

of steady-state tokamak operation [60]. Another major breakthrough on the

theoretical front was the introduction of elongated cross-section plasmas. In

a pioneering article published in 1972 [61], Artsimovich and Shafranov pro-

posed to modify the geometry of the plasma cross-section with the aim

of improving the confinement performances of the reactor. This led to a
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series of experiments (T-8, T-9, T-12, TBD) which confirmed that a plasma

equilibrium with a non-circular cross section was actually possible. In these

machines -T-8 entered into operation in 1976- the first divertor configura-

tions were created [48]. Divertor configurations proved to be useful both

to handle power exhaust and to lower the amount of impurities entering

the plasma due to wall sputtering, and hence they were largely studied in

the 80s. In particular, the Axially Symmetric Divertor EXperiment (ASDEX)

tokamak (R = 1.65 m, a = 0.4 m, Ip 6 0.5 MA, B 6 2.8 T ; it entered

into operation in 1980) was built in Germany to explore this new configu-

ration [62]. One of the most important moments in modern fusion research

came on the 4 February 1982, when the German scientist Fritz Wagner (born

1943) observed an unexpected transition while conducting an experiment

on neutral beam heating on ASDEX. As Wagner himself reported [63], «it

wasn’t predicted, it just happened» : suddenly, after being exposed to intense

NB heating, edge turbulence of the plasma disappeared, leading to edge

pedestals in temperature and density and improving the confinement of

a factor 2. It looked as a miracle. In the initial experiments performed on

additional heating systems, indeed, it had been found that confinement

worsened as the heating power was increased. Scalings based on this de-

pressing finding would have led to unpractically big reactors [17, 43]. This

new confinement mode came as manna from heaven. It was called H-mode

-where the H stands for ’High confinement’- in contrast to the customary

L-mode plasma discharges which exhibited lower confinement properties20.

Soon, the H-mode was reproduced on many other devices, and was rec-

ognized as a universal phenomenon. Today, the scalings for the ITER are

based on this experimentally well-assessed confinement regime. However,

there’s another side to the coin: along with the H-mode came a new kind

of instability: the ELM [66].

20 More details on the H-mode can be found e. g. in [64, 65]. To date, H-mode has not been
completely understood yet.
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A few years after PLT and T-10, much bigger experiments set off in Eu-

rope, Japan, US and in the Soviet Union, aiming at improving the confine-

ment with a 10-fold increase in size.

In the UK, design works for the JET started in 1973. Too expensive for

a single laboratory, the machine became a joint European effort21. It was

completed in 1983 (R = 2.96 m, a = 1.25− 2.10 m, Ip 6 4.8 MA, B 6 3.45 T ),

and it still is the biggest tokamak in the world. After T-8, JET was one of

the first tokamaks in the world designed with a D-shaped vacuum vessel.

This had the twofold purpose of improving the safety factor and increasing

the mechanical thoughness of the machine. It was known that elongated

plasma were vertically unstable; however, simulations of these elongated

plasmas showed that the instability could be slowed down by the conduct-

ing walls of the reactor to a rate controllable by a feedback system, which

was hence included in the design. Later on, the plasma control system of

JET was enhanced, in particular with the introduction of plasma current

and shape feedback controllers [67], allowing to obtain divertor plasma

configurations. In 1986, in the light of the recently discovered H-mode, a

test divertor was installed in JET; H-mode was achieved, and the results in

terms of confinement performances were promising, encouraging the JET

team to install purpose-built divertor [17]. Initially dimensioned for a 3 MA

current, which was raised to 4.8 MA during the design phase, the reactor

was able – owing to its particularly good design – to reach 7 MA of plasma

current.

In response to Europe, the US built the Tokamak Fusion Test Reactor

(TFTR) (R = 2.52 m, a = 0.87 m, Ip 6 3 MA, B 6 6.0 T ). The project was

proposed in 1974 and approved in 1976, and the reactor went into operation

on December 1982 (a few months before JET, mainly due to a quicker deci-

sion on the site) [17, 68]. Both machines had the goal of achieving plasma

21 A political battle set off between Germany and England to house the reactor. Curiously
enough, the decision came in October 1977, after a Lufthansa plane was hijacked by the
Baader-Meinhof gang and was rescued in Mogadishu with the aid of the British, who
provided some special grenades for the operation [17].
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break-even. The JET design, as we saw, was focused on a big plasma volume

and its D-shaped cross section to increase the confinement time and hence

the thermonuclear yield. TFTR, on the other hand, had been designed with a

circular cross-section, and did not allow to install a divertor [17]. More em-

phasis was put on having a powerful NBI system, in order to take advantage

of non-thermal beam-plasma reactions [43]. NBI experiments performed on

this machine in 1986 produced record ion temperatures of approximately

200 million degrees [58]. This record was raised to 510 million degrees in

1995. TFTR was also the first machine to extensively perform 50/50 D-T ex-

periments, producing in 1993 up to 10 MW of CNF power for 1s, with a Q

factor of about 0.3. This result, however, was overcome in 1997, when JET set

the current world record for fusion power: 16 MW for ~1s, with a maximum

Q of ~0.65. TFTR was closed in 1997 to leave room for a new experiment, the

National Spherical Torus eXperiment (NSTX). Since then, JET remained the

only operating machine to have the facilities for tritium operation.

Figure 22: TFTR and JET.

In the USSR, a plan was announced to build a larger tokamak (the project

was named T-20), but eventually the decision fell on a smaller design, which

was baptized T-15 (R = 2.43 m, a = 0.78 m, Ip 6 1 MA, B 6 3.6 T , first

plasma in 1988). T-15 was the first tokamak to use superconducting helium-
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Figure 23: T-15 and Japan Torus-60 (JT-60).

cooled Nb3Sn coils. Eventually, it was shut down in 1995 due to lack of

funds22.

The last of the big tokamaks built in that period was JT-60 (R = 3.4 m,

a = 1.0 m, Ip 6 3 MA, B 6 4 T ; approved in 1979, 1st plasma in April

1985), in the Ibaraki prefecture of Japan. Differently from JET and TFTR, JT-60

was designed with a divertor since the beginning. Since the first version of

the divertor seriously limited the available plasma volume, in 1989 the ma-

chine was shut down to install a new one. The upgraded machine (named

Japan Torus-60 Upgrade (JT-60U)) came into operation in 1991; it reached

plasma currents up to 6 MA [17]. While JET and TFTR focused their efforts

on deuterium-tritium operation, JT-60U pushed the performances in D-D ex-

periments. In 1998, this tokamak set the current record for the equivalent

fusion energy gain factor Qeq: 1.25 [71]. Currently, the machine is undergo-

ing a new upgrade, named JT-60SA; the installation of superconducting coils

is foreseen. The first plasma is planned for September 2020 [72].

With the big tokamaks built and operated in the 1970-1990 season, the

achievability of many scientifical and technical goals was demonstrated:

reactor-like temperatures, tritium operation (with the subsequent techno-

logical implications, e. g. remote handling of the inside components of the

reactor) [73], high gain factor [71] have already been discussed. So, what

issues remain to be addressed? For a commercial reactor, steady state oper-

22 In 2010, a further upgrade was proposed with the aim of building a hybrid fusion-fission
reactor [69]. It should be completed this year [70].
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ation is fundamental, as energy has to be produced in a continuous way. For

this reason, stellarator research received new impulse, with the construction

of devices such as Wendelstein 7-X (W7-X) (first helium plasma in Decem-

ber 2015), which are optimized to reduce particle loss while maintaining

stability and confinement properties and feasible coils [68]. W7-X achieved a

plasma pulse duration of ~30m during the first operation phase, ended in

March 2016
23. On the other hand, the concept of the advanced tokamak was

put forward, aiming at increasing the bootstrap current fraction and ex-

ploiting non-inductive current drive methods (NBI, Lower Hybrid Current

Drive (LHCD) and so on) to supply for the remaining part of the plasma cur-

rent [68]. In this view, internal profiles tailoring is required to maximise the

bootstrap current fraction, feedback control of MHD instabilities is needed,

and efficient power exhaust methods become necessary.

If JET, TFTR and JT-60U substantially demonstrated that fusion is scientifi-

cally possible, it remains to prove that fusion is also technically feasible; the

goalQ > 1 is still to be achieved in D-T operation. This will be the main pur-

pose of ITER24, a machine which is currently being built in Cadarache, in the

south of France, as a joint effort of several countries around the world (EU,

USA, Russia, Japan, India, China, South Korea). ITER (R = 6.2 m, a = 2 m,

Ip 6 15 MA, B 6 5.3 T ) is expected to achieve Q ~10 at ~500 MW for ~400s,

and Q ~5 at ~350 MW for ~2500s. The first plasma is expected for 2025,

whereas the machine should enter into proper operation by 2035
25.

23 More details on the machine can be found on the IPP website [74].
24 It is not a coincidence that ITER is also the Latin word for ’pathway’, the end of this path

being a commercial fusion reactor. Before then, however, a first demonstration power plant
should be built. The name by which the preliminary design proposal for such a plant are
denoted is DEMOnstration power plant (DEMO) [75].

25 Before ITER, other designs were proposed, such as the Next European Torus (NET) [76]
and the INternational TOkamak Reactor (INTOR). The ITER project itself had a troubled
gestation, which suffered from political hiccups, long delays and increases in the foreseen
cost. For a more detailed review of the history of the ITER project see, for example, [17].
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C O N T R O L L E D N U C L E A R F U S I O N

"The whole is greater smaller than the sum of its parts"

— Aristotle (?)

2.1 nuclear fusion

Nuclear fusion is, by definition, a process in which two elements nuclei

blend together to form a heavier one. In general, a nucleum composed by N

neutrons and Z protons has a mass which is slightly smaller than the sum

of the masses of the single nucleons. The missing part, called mass defect, is

converted into energy according to Einstein’s formula:

E = mc2 (1)

For light elements, such as the isotopes of hydrogen, fusing into heavier

nuclei is energetically favourable, and thus in this case fusion reactions free

a certain amount of energy, equal to the difference between the potential en-

ergies of the product and the reacting nuclei. This is not the case for heavy

elements (e. g. uranium). This can be understood by considering the two

main forces involved, i. e. the repulsive Coulomb force and the attractive

strong nuclear force. The former acts on a long range (i. e. proportional to

the inverse square of the distance), whereas the latter is much stronger but

acts over a much shorter distance. When a nucleum exceeds a critical com-

bination of charge (i. e. atomic number) and dimension, the electrostatic re-

pulsion overcomes the attractive effect, hence making the addition of a new

nucleon energetically disadvantageous. As it happens, this critical combi-

43
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nation falls in correspondence with Iron-56, where the binding energy of

the nucleum reaches a maximum. Fig. 24 shows the binding energy for dif-

ferent elements. A simple qualitative picture of this phenomenon can be

found, for instance, in [77].

Figure 24: The nuclear binding energy curve.

2.1.1 Fusion reactions of interest

Energy production can only occur when moving upwards along the bind-

ing energy curve, i. e. by fusing light elements together or by smashing

heavy nuclei in fission reactions. But how much energy is produced? Here

is a list of some fusion reactions of interest [77]:Main fusion reactions

1. D+D→ He3 +n+ 3.27MeV

2. D+D→ T + p+ 4.03MeV

3. D+He3 → α+ p+ 18.3MeV

4. D+ T → α+n+ 17.6MeV

5. 3Li6 +n(slow)→ α+ T + 4.8MeV

6. 3Li7 +n(fast)→ α+ T +n− 2.5MeV
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Let us start by considering reactions 1-4. The probability of occurrence

of each reaction can be quantified by an associated cross section (σ). This

cross section can be seen as the area surrounding a target particle within

which the presence of another particle is capable of producing interaction

phenomena (see fig. 25 ).

Figure 25: Graphical representation of the cross section concept.

The potential around a nucleum can be obtained by combining the

Coulomb potential and the nuclear one, and it has the shape of a deep well

surrounded by a barrier (see fig. 26). In order to interact, two particles need

to overcome this barrier, and they can only do so if enough kinetic energy

is provided to them. It is no surprise, than, that the cross section has a

dependence on the temperature of the reactants; this dependence is shown

in fig. 27.

Figure 26: Coulomb barrier in the case of p-p interaction.
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As it can be seen, the cross section of the D-T reaction has the highest

peak at the lowest temperature (~5 barns at ~100 keV1), and thus it is the

easiest reaction to initiate. This, together with the big amount of energy

released, is one of the reasons why worldwide fusion research is mainly

focused on D-T. The other main reason is that, with respect to the other

listed reactions, the D-D one is too difficult to trigger, and there is no natural

supply of helium-3 on Earth.

Figure 27: Cross section with respect to temperature for different fusion reactions
(1barn = 10−24cm2). The two D-D reactions listed have the same prob-
ability of occurrence.

However, the D-T reaction presents some disadvantages, too. First of all,

it produces high-energy neutrons2, which in turn cause material activation

and radiation damage; second, it needs tritium, a radioactive and unstable

material, which decades into helium-3 with a half-life of 12.33 years3 and

1 Actually, a classical computation for the Coulomb barrier would yield EB = e2/4πε0d, i. e.
288 keV for d = 5× 10−15m. In fact, the peak is shifted towards a lower value due to
quantum mechanical effects [77]. However, even ~100 keV correspond to an impractically
high temperature of ~1 billion degrees. This value can be further lowered (of about one
order of magnitude) taking into account the velocity distribution of the particles -which
is assumed to be the Maxwell-Boltzmann one in the case of thermonuclear fusion- and
accepting that only the high-energy tail of this distribution satisfies the requirements for
the reactions to occur.

2 Incidentally, since one of the products of the reaction is charged while the other is not, it is
useful to know how the energy is distributed among the products. By classical arguments
(energy and momentum conservation) it is easy to show that the energy of the products is
inversely proportional to their masses, yielding: D+ T → α(3.5MeV) +n(14.1MeV).

3 This is a manageable span of time, especially if compared to the 700 million years half life
of U235 –which is used in fission reactors– and the 4 and a half billion years one of U238.
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is hence practically absent in nature (whereas deuterium can be easily ex-

tracted from water). Yet, these setbacks are not enough to abandon fusion

research. To have a rough idea of the amount of energy released, we can

compare it to the energy obtained by the combustion of fossil fuels. Burn-

ing 1 kg of gasoline produces ~40 MJ, enough to move a car for about 10

km. This is quite an impressive number, but it is just a speck of dust com-

pared to fusion energy: 1 kg of D-T mixture could, in principle, release a

ten-million higher energy of ~338× 106 MJ [77]. Tritium can be obtained

exploiting the reactions 5-6 mentioned above; in particular, reaction 5 is

much easier to initiate, and is hence preferred to reaction 6, even though

3Li
7 constitutes 92.6% of natural lithium. Technical solutions for neutron

handling have been worked out during the years, even though the issue

still constitutes an active research topic. However, most present day experi-

mental reactor are meant to explore plasma physics or technological issues,

and hence operate without tritium, with very few neutrons produced due

to some sporadic D-D reactions occurring.

2.1.2 Power balance for a fusion reactor

Now that the main features of the D-T reaction have been described, we can

move on to establish some criteria to be met in order to build a useful fusion

reactor. 4. Let us assume that the device is fuelled with a 50/50 mixture

of deuterium and tritium. Calling nD, nT , ne the densities of deuterium,

tritium and electrons respectively, we have nD = nT = n/2 and ne = n.

4 The first step in this direction was made by the British engineer and physicist John Lawson
in 1955. In his analysis, Lawson derived an energy balance from which he was able to
deduce a lower boundary for some parameters of interest. Here we will follow a slightly
different path. The interested reader is referred to [44]
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The total power density produced by fusion reactions can be estimated

by multiplying the energy produced by a single reaction (wN = 17.6MeV)

times the reaction-rate5 of D-T:

pN = nDnT 〈σv〉wN =
1

4
n2〈σv〉wN (2)

Analogously, the α-particles energy is given by:

pα =
1

4
n2〈σv〉wα (3)

where wα = 1
5wN = 3.5MeV .

The average energy of the particles, at a given temperature T, is given by
3
2T . The energy per unit volume is hence:

w =
3

2
(nD +nT +ne)T = 3nT

[
eV/m3

]
(4)

The losses due to heat conduction can be quantified by defining the energy

confinement time τE as the characteristic time over which the system loses

energy67:Confinement time

pT =
dw

dt
=
3nT

τE
(5)

Radiation losses, at a temperature of ~1 million K, are mainly due to

Brehmsstralung, i. e. the radiation emitted by a particle which is decelerated

5 The reaction rate is the number of reactions that occur per unit time and space. Calling
〈σv〉 the cross section averaged over the velocity distribution, and n1, n2 the densities of
the reactants, the reaction rate is given by R1,2 = 〈σv〉n1n2 [77].

6 For a correct estimation of the heat flux, the heat conductivity of the plasma and the
temperature gradient at its edge should be known. This in general is not easy, mainly due
to the complexity of the transport phenomena involved. In practice, τE can be estimated
by regression analysis over a number of plasma discharges in different conditions, and
is in general a function of temperature and pression [77]. For simplicity, we will neglect
this dependence for now. On the other hand, a simple way to estimate τE can be obtained
neglecting the nuclear-generated power and the other source of losses, i. e. pH = pT , where
pH is the heating power applied to the plasma [78].

7 In his work, Lawson made the simplifying assumption that, in a pulsed machine, the gas is
heated instantaneously to a temperature T, which was then hold for a time span τE before
allowing the gas to cool down. The final result is the same.
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when deflected by another charged particle. In his work, Lawson quantified

the power density due to this effect as (Zi = 1 for both D and T)8: Brehmsstralung

pB = 1.4× 10−38n2Z2iT1/2 = CBn2T1/2
[
W/m3

]
(6)

In his original paper, Lawson supposed that part of the heat produced in

the device could be fed back into the machine to heat the reactants, with a

given efficiency η (typically, η 6 1/3). With this assumption, the machine

power balance reads: Power balance

η

(
wN
4
〈σv〉n2 + 3nT

τE
+CBn

2T1/2
)

= CBn
2T1/2 +

3nT

τE
(7)

From which an explicit dependence of nτE on T can be derived:

nτE =
3T(

η
1−η〈σv〉

wN
4 −CBT1/2

) (8)

Lawson also defined the gain factor as the ratio of the released energy to

the supplied one: Gain factor

Q =
pN
pHeat

(9)

In his work, Lawson assumed that the energetic fusion products escaped

the reactor and hit the walls without interacting with the other particles;

thus, at steady state pHeat = 3nT
τE

+ PB. Under this assumption, for a power

producing system it must hold that:

η (Q+ 1) > 1⇒ Q > 2 (10)

The condition above is commonly referred to as the Lawson criterion,

while Q = 1 is called breakeven condition9.

8 This relation was obtained by G. Cillie in 1932 [44].
9 Actually, there exist a few different definitions of breakeven. The one proposed here is that

of scientific breakeven, i. e. pN = pHeat



50 controlled nuclear fusion

A rough estimate of the nτE lower bound can be given as follows [78].

Let us assume that only the α-particles re-heat the plasma, while the

neutrons escape without interactiong with the D-T ions. Neglecting the

brehmsstralung losses10 and assuming that wα is completely transferred to

the reactants, the power balance becomes:

pHeat =

(
3nT

τE
−
1

4
n2〈σv〉wα

)
(11)

If we assume that the reactions are sustained only by internal heating (i. e.

pHeat = 0) we obtain:Ignition

nτE >
12

〈σv〉
T

wα
(12)

This condition is called ignition, and is equivalent to Q = ∞.

For a D-T reaction, the relation above has a minimum close to T = 30keV ,

which yields a lower boundary for the Lawson parameter nτE equal to

1.5× 1020m−3s. Since τE is function of T, however, we can consider the triple

product nTτE; as it turns out, the optimal temperature is in the 10-20 keV

range, and the ignition condition becomes [78]:Triple product

nTτE > 3× 1021m−3keVs (13)

2.2 plasmas

At the end of sec. 2.1 it was discussed how the optimal temperature

for a fusion reactor falls in the 10-20 keV range, equivalent to ~100 mil-

lion Kelvin. At such a high temperature, any material is in a state known as

plasma11. What is a plasma? A good definition can be found in [79]: «plasma

is quasi-neutral gas with so many free charges that collective electromagnetic phe-

10 For a more detailed discussion of this assumption and its implications, see [77].
11 See also note 1.
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nomena are important to its physical behavior» 12 A good picture is that of a

(ideally fully) ionized gas composed by a plethora of microscopic charge

carriers (ions and electrons). These carriers constitute two –or more– elec-

trically charged fluids of opposite signs, which tend to arrange in such a

way to neutralize the macroscopic charge density. This condition is known

as quasi-neutrality – the ’quasi’ depending on the fact that small deviations

from a proper neutrality condition can have significant repercussions on

the plasma behaviour. The presence of so many free charges in the plasma

makes it an exceptional electrical conductor, especially at high tempera-

tures and low densities. For this reason, plasmas are extremely effective in

shielding DC electric fields (whereas magnetic fields can penetrate)13.

2.2.1 Basic properties and parameters

Quasi-neutrality and electrical conductivity are the two basic properties

that define a plasma, making it different from a regular gas. In this section,

some consequences of these properties will be discussed, leading to the

definition of some parameters of interest.

As we said, plasma is very effective in shielding DC electric fields; in-

deed, the potential generated by a point charge introduced into an other-

wise quasi-neutral plasma can be proved to decay in an exponential way.

The characteristic length over which this shielding occurs takes the name

of Debye length, and is equal to [79]: Debye length

12 Plasma physics is a vast field of study; in this introduction we will just focus on a few
of its basic aspects. Among the many different books and sources available, [77] and [78]
are probably two of the most widely used, especially in the field of magnetic confinement
fusion and tokamak reactors. [79] and [80] give a good general overview on the subject,
while more details can be found, for example, in [81] and [82]. Finally, in [83] the MHD
model and its application to nuclear fusion are examined in depth.

13 In what follows, temperature will be always expressed in energy units, thus absorbing the
Boltzmann’s constant.
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λD =

√
ε0Te

nee2
(14)

where ε0 is vacuum permittivity, Te, e, ne are electron temperature (in

units of energy), charge and equilibrium number density (in absence of the

external charge)14. For a typical fusion plasma, λD ≈ 10−5 − 10−4m
Let us now consider the case of a group of electrons which is displaced

from its quasi-neutrality position; the Coulomb force pulls them back, act-

ing as a restoring force. It is possible to show that the charge density oscil-

lates at the (electron) plasma frequency [78]:Plasma frequency

ωpe =

√
nee2

ε0me
(15)

An analogous definition can be given for ions. In a fusion plasma, ωpe ≈
1011− 1012s−1. Just as λD is a characteristic length for the plasma, ωp repre-

sents a characteristic frequency: a gas of charged particles can be properly

called a plasma only when characteristic lengths much bigger than λD and

time spans much longer than the period associated to ωp are considered.

Finally, we can define the plasma parameter as [77]:Plasma parameter

Λ =
4π

3
nλ3D =

4π

3

ε
3/2
0

e3
T
3/2
e

n1/2
(16)

which represents the typical number of particles contained in a sphere

of radius λD. When Λ � 1, a Debye sphere is typically densely populated.

A particle is influenced by all the other particles in her Debye sphere, but

this interaction usually does not cause sudden motion changes, and hence

long-range collective effects dominate over binary collisions. In this case,

the plasma is also said to be weakly coupled [82], and can be described in a

14 We dropped the ion contribute by assuming that the ions are much colder than the elec-
trons.
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way similar to a gas15, whereas strongly coupled ones are much more difficult

to deal with. In a typical tokamak plasma, Λ ≈ 108 − 109.

2.2.2 Magnetized plasmas

A particularly interesting example is that of a charged particle (of mass

m and charge q) moving in a uniform magnetic field. Despite its simplicity,

it provides some useful insight on the mechanism underlying magnetic

confinement. For such a particle, the equation of motion reads:

m
dv

dt
= qv×B (17)

If the field points in the z direction:

dvx

dt
=
qB

m
vy (18)

dvy

dt
= −

qB

m
vx (19)

dvz

dt
= 0 (20)

The quantity Cyclotron frequency

ωc =
qB

m
(21)

15 This can be easily understood by means of a statistical argument: for a continuum fluid
model to be valid, the plasma must be subdivided into many small volumes which are
much smaller than the typical length of the system but yet contain a great number of
particles. This condition can be satisfied when L � λD and Λ � 1 by taking volume
elements of a size comparable to the Debye radius.
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is the cyclotron frequency associated to the particle motion in the field. A

solution to equations (18)-(20) is given by [78]:

vx = v⊥ sin(ωct) (22)

vy = v⊥ cos(ωct) (23)

vz = vz0 (24)

and the particle moves along a helical trajectory around the field lines:

x = −rL cos(ωct) (25)

y = rL sin(ωct) (26)

z = z0 + vzt (27)

whereLarmor radius

rL =
v⊥
ωC

(28)

is called Larmor radius.

This gyro-motion is the core of the magnetic confinement fusion concept:

when a strong magnetic field is applied, the particles are forced to follow

helical trajectories of width 2rL, and hence transport across the field lines

is strongly reduced (since, in principle, particles can deviate from their Lar-

mor trajectories only when a collision happens). For B = 3T , T = 10keV ,

the Larmor radii of an electron and a proton are, respectively, 0.11 mm

and 4.8 mm, while the gyro-frequencies are fcp = 2πωcp = 46GHz and

fce = 2πωce = 84GHz [78]. For a good confinement, in a fusion plasma the

condition L� rLi must hold.

The magnetic field’s effect on the plasma can be quantified by means of

two parameters [82]. The first is the magnetization parameter, i. e. the ratio of

the gyro radius to the characteristic length of the system:Magnetization

parameter

δ =
rL
L

(29)
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the other is the so called plasma beta, which represents the ratio of the

thermal energy density nT ≡ p to the magnetic energy density B2/2µ0: Plasma Beta

βs =
2µ0ps

B2
(30)

β =
∑

βs (31)

where the index s ranges over all the species in the plasma.

2.2.3 Plasma description

A plasma can be described at different complexity levels. An exact de-

scription requires the solution of the equations of motion for all of the

particles. This is an incredibly demanding task, which in most cases can

be carried out only by approximations and numerical simulations. Yet, this

level of accuracy is needed to analyse some physical phenomena.

A slightly less accurate –but still quite complicated– level of description,

consists in characterizing plasma in a statistical way. This can be done by

treating the motion of a large number of particles by means of their statis-

tical distribution function in both position and velocity. This is the core of

the so called kinetic theory, which proves to be useful in many cases (e. g.

for the analysis of energy deposition in fusion plasmas associated with var-

ious heating methods). We will not cover this argument; more details can

be found in [81].

The next step in terms of simplifications is to describe each species in

the plasma as a charged fluid16. This is the basis of the MHD description.

As it usually happens with gases and fluids, in the MHD frame plasma

is treated as a continuum, and microscopic fluctuations are neglected in

favour of macroscopic parameters such as pressure and temperature. This

16 Macroscopic fluid equations can be derived rigorously by taking the statistical momenta
of the velocity distribution function – usually assumed to be Maxwellian – of the particles
in the kinetic model and adding some closure conditions. This topic will not covered here;
see [78].
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is common practice in statistical and fluid mechanics (see, for example, [84]).

However, MHD is more complicated than customary fluid equations, due to

the interaction between electrically charged fluids and the electromagnetic

field.

Finally, a single fluid description can be straightforwardly obtained from

the multi-species MHD model. Indeed, for a plasma made of two species

(namely electrons and ions), we can define the following quantities:

• ni ' ne ' n number densities of ions and electrons (assumed to be

equal due to quasi-neutrality)

• ρi = mini, ρe = mene, ions and electrons mass densities

• Ti, Te, ions and electrons temperatures

• pi = niTi, pe = neTe, ions and electrons pressues

• vi, ve, ions and electrons fluid velocities

From these, the following single-fluid quantities can be defined [83]:

• ρ = ρi + ρe ' ρi (since mi � me)

• v ' vi (momentum is mostly carried by the heavy ions)

• J = en(vi − ve), current density

• p = pe + pi

• T = Te + Ti

By adding some further simplifying assumptions (e. g. perfectly conduc-

tive plasma, no viscosity, adiabatic behaviour), the ideal MHD model is ob-

tained, which describes how the plasma responds to inertial, magnetic and

pressure forces in a given magnetic geometry. Ideal MHD will be the starting

point for the plasma modelling which will be discussed in the next chapter.

Hence, the next section will be devoted to give some physical insight into

it.
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2.2.4 Ideal Magnetohydrodynamics

In a fusion plasma characteristic length, velocity and time are given

by L ∼ a (the overall plasma dimension, which is usually in the order of

meters), vi ∼ vTi (the thermal velocity of ions, vTi =
√

2T
mi

, in the order of

106m/s), τ ∼ a/vTi (typically in the order of µs). These assumptions lead to

the following simplifications [77]:

• 1/τ � ωce ∼ ωpe, hence the electron inertia can be neglected. This is

equivalent to assume me → 0;

• vTi � c, which has two main implications: the first is that the model

describes a non-relativistic regime, the second that the displacement

current term in Maxwell’s equation can be discarded. Furthermore,

since a � λD, the ∇ · E, yielding the quasi-neutrality relation ni ≈
ne. These simplifications reduce Maxwell’s equations to a simpler,

Galileian-invariant form. This is equivalent to assume ε0 → 0.

• a � λDB, the De Broglie wavelength associated to the particles, thus

quantum effects can also be neglected. 17

Due to the massive simplification involved, many phenomena are impos-

sible to describe using only the ideal MHD model. Physical aspects such

as electromagnetic waves propagation, resonance particle effects, radiation,

transport, additional external heating, nuclear reactions and α-particle be-

haviour, ionization and recombination and a wide range of instabilities are

out of the ideal MHD horizon. Nevertheless, the ideal MHD equations cannot

be solved analytically in most of the cases. So, why are they so widely used?

The reason is that the ideal MHD model succeeds in one fundamental task:

describing, at a reasonably manageable level of complexity, the effect of a

17 To cite J. Freidberg [83]: «regarding physics in general, it has been pointed out that the three major
discoveries of modern physics during the last century or so, namely (1) Maxwell’s equations with
the wave propagation, (2) Relativity, (3) Quantum mechanics are each eliminated in the derivation
of MHD.»
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given magnetic geometry on the plasma. The most basic conditions that

every magnetic confinement device must satisfy are the equilibrium and

stability limits set by this description. As J. Freidberg put it in his famous

book on the topic [83], ideal MHD is «the simplest self-consistent model pro-

viding a tractable description of magnetic geometry» . In addition to that, ideal

MHD proves to be useful over a range of conditions which is wider than the

one granted by the physical assumptions behind its formulation.

Now that the main assumptions behind the ideal MHD model have been

discussed, we can move on to the equations. The plasma single-fluid equa-

tions can be written as:Single-fluid MHD

model
∂ρ

∂t
+∇ · (ρv) = 0 (32)

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇p+ J×B −∇ ·Π (33)

d

dt

(
pρ−γ

)
=
2

3
ρ−γ

[
−∇ ·q−Π : ∇v+ ηJ2

]
(34)

which represent, respectively, mass, momentum and energy conservation.

In the 2nd equation, Π represents the viscosity stress tensor; the gravita-

tional force has been neglected. In the 3rd equation, γ = 5/3 (as for a

monoatomic gas), q represents the heat flux and η is the plasma resistivity.

As we said, this fluid model can be further simplified neglecting plasma

viscosity and assuming an adiabatic behaviour. Under these assumptions,

equations (32)-(34) become:Ideal MHD

∂ρ

∂t
+∇ · (ρv) = 0 (35)

ρ

(
∂V
∂t

+ V · ∇V
)

= −∇p+ J×B (36)

d

dt

(
pρ−γ

)
= 0 (37)
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The reader may point out that, since the equations above have been ob-

tained starting from a 2-fluid model, some more pieces of information must

be available. In particular, these are the charge conservation law:

∇ · J = 0 (38)

and the Ohm’s law, which is usually written in the simplified form:

E+ v×B = ηJ (39)

When η = 0, the model is called ideal MHD, while the case η 6= 0 is

referred to as resistive MHD model.

The equations above must be coupled with the low frequency Maxwell

equations:

∇× E = −
∂B
∂t

(40)

∇×B = µ0J (41)

∇ ·B = 0 (42)

Since, as we saw, the characteristic MHD time –which is of the order of

1µs– is much smaller than the length of a typical plasma discharge, the

latter can be assumed to evolve through a series of equilibrium states. If

the external fields and plasma current and pressure are given, steady-state

MHD equations can be solved repeatedly to calculate the evolution of the

magnetic geometry of the system. In this frame, the ideal MHD model de-

scribed above is further simplified in order to describe a stationary plasma

equilibrium, i. e. ∂/∂t = 0 and v = 0. The MHD equilibrium equations read: MHD equilibrium

∇p = J×B (43)

∇×B = µ0J (44)

∇ ·B = 0 (45)
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The main properties of this description will be discussed in chapter 3.

2.3 tokamaks

As it was already mentioned in the previous chapter, the tokamak (Rus-

sian abbreviation for toroidal’naya kamera s magnitnymi katushkami — toroidal

chamber with magnetic coils) is a toroidal magnetic confinement system, in-

vented by the Russian scientists Andrej Sacharov and Igor Tamm in 1950 at

the Kurchatov Institute. In a tokamak, the confinement is mainly provided

by means of a strong toroidal magnetic field, which can range from a few

teslas to a maximum of ~15T.

Bending the field lines into a torus has the main advantage of avoiding

particle end-losses. However, the plasma ring would tend to naturally ex-

pand, and a purely toroidal field is not enough to provide a balancing force.

To achieve an equilibrium configuration, a poloidal field is needed in addi-

tion to the toroidal one (see note 6, p. 18). In a tokamak, this poloidal field is

obtained by inducing a toroidal current into the plasma. As a consequence,

in a tokamak the safety factor q ≈ rBφ/R0Bθ is an increasing function of

r, and usually it holds that q > 1 over the entire plasma due to the strong

toroidal field [77].

To date, the tokamak is the most promising fusion reactor concept, and

several experiments exist around the world.

2.3.1 Main components

The strong toroidal field needed in a tokamak is produced by means of

a set of windings, called Toroidal Field Coils (TFC). The maximum achiev-

able field is limited by two main factors, i. e. the maximum forces that the
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Figure 28: Cutaway of the ARIES-AT tokamak; the main parts are labeled.

coils can bear and the Joule losses. To minimize Joule losses, in particular,

superconductive TFC are often adopted in modern devices. 18

The plasma current needed to produce the poloidal magnetic field is

usually induced in the plasma by means of a central primary winding (the

Central Solenoid (CS)). To reduce both the required power supply capacity

and stray magnetic field lines, the CS often has an iron transformer core

(e. g. in JET).

To achieve radial force equilibrium, a vertical field must be supplied by

external circuits. Furthermore, it is often desirable to modify the plasma

shape to optimize the performances of the machine (for instance, a combina-

tion of triangularity and elongation allow higher values of β [77]). Vertical

field and shaping circuits (and, in some cases, even the CS) are often col-

18 The need for such a strong field is one of the main disadvantages of the tokamak configura-
tion, due to the technological complications entailed. The other great disadvantage of the
tokamak is the intrinsically pulsed operation; a solution could be found in the Advanced
Tokamak (AT) concept, based on non-inductive current sources (see 2.3.2.
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lected under the common name of PFC, which can be exploited to control

the plasma shape and position. Plasma position and shape control algo-

rithms and architectures will be the main focus of this work. Sometimes,

further coils are placed inside the vacuum chamber, to provide a faster ac-

tion on the plasma thanks to the lower magnetic field penetration time;

these coils are usually made of copper alloys, since superconductors could

not be cooled efficiently enough close to the hot plasma. These are usually

referred to as In-Vessel coils, and are often employed to vertically stabilize

elongated plasmas.

Using only ohmic heating, plasma temperatures of a few keVs can be

achieved. Since plasma conductivity scales as σ ∝ T3/2 [56], Joule losses in

the plasma become weaker and weaker as the temperature rises, and thus

additional heathing methods are needed in order to reach T ≈ 10keV . NBIs

and RF heating are the main techniques used to address this issue.

In a tokamak, plasma has a very low density, of about 1020 particles per

cubic meter. To mantain such a low pressure, the plasma is contained in-

side a vacuum vessel. Impurities in the plasma lead to radiation losses and

confinement degradation, thus plasma dilution must be avoided at all costs;

for this reason, plasma must be separated from the vacuum chamber walls.

Furthermore, the massive heat loads produced by a fusion plasma must

be handled appropriately. Both these issues are usually addressed in two

main ways: the first is to use a suitable material in the region where the

plasma hits the first wall, which constitutes the so called limiter; the second

is to adopt a magnetic configuration in which the main plasma is separated

from the vessel walls. In the second case, the power exhaust is concentrated

on a region of the chamber which is called divertor.

Finally, in a proper reactor, many other components will be needed, such

as diagnostics, vacuum pumps, a cryostat for the superconductive coils, and

so on. Among these, a blanket (made of Lithium composites such as Li2O)

capable of slowing down the produced neutrons and breeding tritium is
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fundamental. Since not all of the produced neutrons react with the Lithium

in the blanket, a neutron multiplier will also be necessary (e. g. Beryllium).

Figure 29: Limiter and divertor plasmas at JET.

2.3.2 Tokamak operation

A tokamak is an intrinsically pulsed device. In a typical scenario, 5 main

phases can be distinguished:

1. premagnetization, during which the external coils current increase to a

pre-determined value

2. the breakdown, in which the plasma is formed, usually inducing a

strong electric field in the neutral gas with a fast variation of the CS

currents

3. the ramp-up, during which the plasma current is increased to a desired

value

4. the flat-top, during which the plasma current is kept constant

5. the ramp-down, during which the plasma current decreases and even-

tually the plasma dies.



64 controlled nuclear fusion

Broadly speaking, designing a tokamak scenario consists in characterizing

all of the above mentioned phases, and choosing the appropriate plasma pa-

rameters and the external currents to be applied so as to obtain the desired

behaviour without meeting operational limits.

Pulsed operation is due to the limited currents that can flow in the ex-

ternal coils. To sustain the plasma current against the resistivity losses, the

currents in the external coils (in particular in the CS) have to ramp to in-

duce a desired emf into the plasma. This is one of the main disadvantages

of the tokamak configuration, for two main reasons: first, it is ostensi-

bly not desirable for an electrical power station; second, pulsed operation

causes thermal fatigue and increases the risks of faults and damages to

the machine. To achieve steady state operation, non-inductive current drive

sources are hence needed. A possibility is to exploit the transport-induced

bootstrap current, which arises spontaneously from the non-uniformity of

the magnetic field in toroidal geometry and can virtually make up for the

95% of the total current [78]. In practice, for AT operation, a mix of ~75%

bootstrap and ~25% external current drive sources -such as NBIs or Radio-

Frequency CD- is foreseen [77].
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3
P L A S M A M O D E L L I N G

"Everything should be made as simple

as possible, but not simpler."

— Albert Einstein

In chapter 2 some basic aspects of nuclear fusion and plasma physics

have been covered, and the tokamak geometry for magnetic confinement

has been presented in its main components. In this chapter, we will move

on to introduce plasma electromagnetic modelling and control techniques.

The first step consists thus in specializing the MHD equilibrium condition

to the case of a tokamak configuration [85–87].

3.1 plasma equilibrium in axisymmetric geometry

As John Wesson put it [78], tokamak equilibrium consists of two main as-

pects:

1. the internal balance between the kinetic and magnetic pressure

2. the position and shape of the plasma, determined by the currents

flowing in the external coils

As it was discussed in section 2.3, the toroidal field is primarily generated

by the TFC system; due to the toroidal geometry, this field is proportional

to the inverse of the radius. This simple estimate can be refined by taking

into account the diamagnetic effect of the plasma and the ripple due to the

non-uniformity of the TFCs along the torus. However, for our purposes it

will often suffice to assume that Bφ is assigned. Indeed, it will be discussed

69
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how -although in a different form- it will enter as a source term in the

equilibrium equation that we are about to derive from (43)-(45).

It is common practice, to simplify the numerical calculations needed to

solve the MHD equations, to approximate the tokamak as a perfectly axysim-

metric device and to assume a cylindrical set of coordinates (r, z, φ). Under

this axisymmetry hypothesis, any dependence on the toroidal coordinate φ

is neglected (i. e. ∂A/∂φ = 0 for every physical quantity A)1.

To investigate the equilibrium configurations of the magnetic field, let

us start with the definition of the useful poloidal flux function Ψ(r, z), i. e.

the magnetic flux through the surface enclosed by a circumference Γ(r, z)

which is coaxial with the torus and passes through the point (r,z) in the

poloidal plane. From the definition of Ψ and the divergence-free condition

for B (eq. (45)), it follows that:Poloidal flux function

∇Ψ = 2π(rBz,−rBr) (46)

In the exact same way, a poloidal current function Ipol(r, z) can be defined,

which satisfies (we assumed µ = µ0 in the plasma):Poloidal current

function

µ0Ipol = 2πrBφ (47)

∇Ipol = 2π(rJz,−rJr) (48)

1 This is quite a strong hypothesis, since a tokamak is not axially symmetric for many rea-
sons, but it greatly simplifies the analysis and is sufficiently well verified to prove ex-
tremely useful in many cases. Methods to couple an axysimmetric plasma with 3D non-
axisymmetric surrounding structures have been proposed e. g. in [88, 89].
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(eq. (47) comes straightforwardly from Ampère’s law). Defining ψ = Ψ/2π2

and f = µ0Ipol/2π = rBφ
3, equations (46) and (48) can be rewritten as:

∇ψ = (rBz,−rBr) (49)

∇(f/µ0) = (rJz,−rJr) (50)

Eq. (49) and (50) allow us to write the poloidal magnetic field and current

as

B =
∇ψ
r
× êφ +Bφêφ (51)

J =
∇(f/µ0)

r
× êφ + Jφêφ (52)

The magnetic field is hence perpendicular to the poloidal flux gradient,

which means that the magnetic field lines lie on the surfaces where ψ is

constant (whose topology is described by the Grad-Shafranov equation, as

we will see shortly). The twist of the field lines on these magnetic surfaces

can be characterized by means of the safety factor q introduced in sec. 2.34.

2 ψ = Ψ/2π is usually referred to as ’poloidal flux per radian’, to distinguish it from the
poloidal flux function Ψ. However, since we will most often deal with ψ, for brevity the
name ’poloidal flux’ will be used for ψ.

3 Often, in the literature, the function f is defined without the factor µ0. However, the present
definition proves to be useful when materials with µ 6= µ0 are considered, i. e. the ferro-
magnetic core at the JET tokamak.

4 See also p. 18.
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At this point, it is worth to briefly focus on the MHD equilibrium condi-

tion ∇p = J× B (eq. (43)) 5. From this condition, it immediately follows

that:

B · ∇p = 0 (53)

J · ∇p = 0 (54)

Eq. (53) implies that p does not vary along the field lines, and hence the

magnetic surfaces are also surfaces of constant pressure. A physical expla-

nation for this can be found observing that the sound speed in a plasma is

quite large (105 − 106ms−1 [78]), thus any pressure imbalance along a field

line is rapidly removed. From eq. (54) it follows that also the J lines lie on

the magnetic surfaces. Since p is constant on a surface of constant ψ, it can

be expressed (at least locally) as a function p = p(ψ) of the poloidal flux. In

a similar way, from equations (50)-(54), it can be found that ∇f×∇p = 0,

and thus f can be expressed as a function f = f(ψ) of the poloidal flux as

well.

5 It is maybe worth to stress again that, by assuming an equilibrium condition, plasma inertia
has been neglected. This can be justified from a physical point of view by the observation
that, in a tokamak plasma, the mass density is usually very small(of the order of 10−20

particles per cubic meter, i. e. ~10−4gm−3), while the force density is quite large (a few
tonnes per m−3), so in practice it can be assumed that the internal forces must balance.
Plasma pressure exerts an outward force, while an inner contribution comes from the
poloidal field; the imbalance between the two is taken up by the toroidal field magnetic
pressure.
By using Ampère’s law (eq. (41)) to eliminate J and the vector identity:

∇(F ·G) = (F · ∇)G + F× (∇×G) + (G · ∇)F + G× (∇× F)

with F = G = B, the J×B term can further be separated in two contributions:

∇

p+ B2

2µ0︸︷︷︸
MP

 =
1

µ0
(B · ∇)B︸ ︷︷ ︸
MTF

The former of the two terms represent the magnetic pressure (MP), while the latter is the
magnetic tension force (MTF), i. e. the force exerted on the plasma from the magnetic field
due to its curvature. It can be rewritten as B

2

µ0
κ, where κ = b̂ · ∇b̂ is the magnetic field

curvature vector. See [77] for some insightful examples.
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Using equations (51)-(52), the force balance condition can be rewritten as:

∇p = Jp × êφBφ + êφJφ ×Bp

=
1

r

(
∇f× êφ

)
× êφBφ + êφJφ ×

1

r

(
∇ψ× êφ

)
= −

Bφ

r
∇f+ Jφ

r
∇ψ

Since:

f = f(ψ) ⇒ ∇f = df

dψ
∇ψ = f ′∇ψ

p = p(ψ) ⇒ ∇p =
dp

dψ
∇ψ = p ′∇ψ

the toroidal current component can be expressed as:

Jφ = r
dp

dψ
+Bφ

d(f/µ0)

dψ

= rp ′(ψ) +
1

µ0r
f(ψ)f ′(ψ)

Plugging the above expression into the toroidal component of Ampére’s

law (eq. (44)):

µ0Jφ =
dBr

dz
−
dBz

dr

= −
1

r

∂2ψ

∂z2
−
∂

∂r

(
1

r

∂ψ

∂r

)
we finally obtain the Grad-Shafranov equation: Grad-Shafranov

equation

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= −

(
µ0r

2p ′(ψ) + f(ψ)f ′(ψ)
)

(55)

This equation admits solutions in terms of nested magnetic surfaces, which

allow to define a magnetic axis and a plasma boundary. Usually, the bound-

ary is defined as the Last Closed Flux Surface (LCFS) for limiter plasmas, i. e.

the outermost magnetic surface whose lines do not itersect the walls of the
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chamber, while for divertor configurations it is identified with the separa-

trix between open and closed field lines (see fig. 31)6. Often, to simplify the

notation, the elliptic differential Shafranov operator is introduced

∆∗ψ = r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2

leading to the more compact form

∆∗ψ = −µ0rJφ (56)

By choosing appropriately the expression for the source term, eq. (56) can

describe all the structures of a tokamak (see fig. 30). I. e. , in the external

conductors7:

∆∗ψ = −µ0rJext(r, z, φ) (57)

while in the vacuum:

∆∗ψ = 0 (58)

Furthermore, to assure that the solution is unique, a set of boundary con-

dition must be assigned. A set of Dirichlet boundary conditions is given

by ψ = 0 at the r = 0 axis (coming from the definition of poloidal flux)

plus a regularity condition ψ → 0 at infinity. In addition, it must hold that∫
ΩP
JφdΩ = Ip (where ΩP represents the plasma region).

6 Here it is perhaps worth observing that, with this definition, we are implicitly assuming
that the plasma is separated by the surrounding vacuum/containing structures by a sharp
boundary, the aim of shape control being that of bringing the position and shape of this
boundary towards a desired configuration. It holds clear that, in reality, the plasma does
not have such a sharp edge, and this is only a conventional definition.

7 For the external active coils, the current density is obtained in general as NIext/S, where
Iext is the current in the conductor, N is the number of turns and S is the cross section.
The current flowing in the passive structures, instead, is often neglected when solving
the equilibrium equations. However, the passive structures play a fundamental role in the
evolutionary MHD problem, as it will be discussed in what follows.
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Figure 30: Domain partitioning for the axisymmetric equilibrium problem (the
plasma poloidal cross section is denoted by Ωp, the PFCs by Ωi, the
passive structures by Ωc, Ωa and Ωv represent air and vacuum).

Figure 31: Geometry of the flux surfaces for a divertor configuration).
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Evidently, when the plasma is absent the resulting equations are linear.

On the other hand, except for trivial choices of the p ′ and ff ′ functions

-which are not useful for realistic plasma equilibria- and due to the fact

that the plasma region boundary depends on the solution itself, the G-S

describing a plasma equilibrium equation is strongly non-linear and thus

calls for dedicated numerical solution algorithms. Two main problems can

be identified:

1. direct (or forward) equilibrium: the p ′ and ff ′ source terms are assigned

together with the currents in the active circuits and the total plasma

current. The Grad-Shafranov equation is then solved to find the re-

sulting plasma equilibrium configuration. The solution to the direct

problem is useful for prediction or design purposes;

2. inverse (or backward) equilibrium: magnetic sensors measurements are

available together with a measure of the currents in the active circuits

and of the total plasma current. The Grad-Shafranov equation is used

as a constraint to find the equilibrium that best fits the experimental

data. Usually, for the inverse problem, parameterized forms are used

for the p ′ and ff ′ profiles (the parameters could be, for instance, the

coefficients of a series expansion over a suitable set of basis functions),

providing additional degrees of freedom to fit of the available infor-

mations8.

Another distinction can be made between the stationary and the evolutionary

equilibrium problems::

1. the stationary equilibrium problem consists in solving the equilibrium

equations with assigned plasma current Ip, external currents Jext and

plasma profile functions p ′, ff ′.

8 Actually, it is common practice to provide the functions p and ff ′ in terms of a finite set
of parameters even in the forward equilibrium case. See sec. 3.2.1).
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2. the evolutionary equilibrium problems consists in computing the time

evolution of the plasma through a series of equilibrium states (i. e. in

the quasi-static approximation). In this view, the functions p ′, ff ′ must

be provided at every instant t together with initial conditions for the

circuits and plasma currents; the evolution of the plasma and external

currents is described by the usual circuit equations.

In particular, the solution to the evolutionary MHD equilibrium problem

provides the basis for an effective design of the plasma magnetic control

system, as it will be discussed briefly in chapter 4 and more extensively in

the following parts of this work.

The complexity of the problem and its highly nonlinear nature naturally

call for numerical solution methods. A brief overview on the topic will be

given in sec. 3.2.

3.2 solution of the plasma equilibrium problem

This section deals with the solution to the MHD axisymmetric equilibrium

problem. As it is common with partial differential problems, in most cases

a closed-form solution to the problem cannot be found, and one must re-

sort to numerical solving methods. Particular emphasis will be put on the

choices made for the design of the two codes used in this thesis, namely

CREATE-NL [2, 90] and CREATE-L [1].

3.2.1 Profile functions parameterization

The first step towards the solution to the problem stated in sec. 3.1 is to

quantify the source terms appearing in the Grad-Shafranov equation. The
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most general parameterized form of the p ′ and ff ′ functions can be written

as

p ′ = gP(ψ;aP)

ff ′ = gF(ψ;aF)

where gP and gF are functions of the poloidal flux ψ and of a chosen set

of parameters aP or aF; these function are chosen according the guiding

criterion of describing the widest possible range of realistic plasma equilib-

ria while preserving the possibility of univocally determine the parameters

from the available measurements. The parameters are identified -in the case

of the inverse equilibrium reconstruction problem- to obtain a best fit of the

available measurements, in general obtained via a possibly nonlinear opti-

mization procedure (e. g. as it is done at ASDEX when the interpretative

code CLISTE runs in Slow Mode [91]). However, this approach is in general

too slow for real-time equilibrium reconstruction. For this reason, parame-

terizations of p ′ and ff ′ in terms of linear combinations of basis functions

depending only on ψ are usually preferred [85, 86, 91], leading to a linear

regression form of the problem.

Usually, for what concerns control design purposes, an extremely accu-

rate description of these functions is not needed. Moreover, detailed infor-

mations about the current density profile are difficult to obtain starting

from external magnetic measurements. Finally, in this case a fast execution

is a much more desirable characteristic, from the engineering point of view,

than a high degree of accuracy, since the final purpose is that of designing

a magnetic control system, which should be robust against parameter vari-

ations. Indeed, it will be discussed how that the variations of the source

term can be trated as external disturbances. In this view, a simple parame-
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terization of the source term Jφ = rp ′+ 1
µ0r
ff ′ is again chosen. A possibility

is [92]

Jφ = λ

[
β0
r

R0
+ (1−β0)

R0
r

]
j(ψ̄, αm, αn) (59)

where ψ̄ = (ψ−ψa)/(ψb −ψa) represents a normalized flux, ψa and ψb
are the poloidal flux per radian at the magnetic axis and at the boundary

respectively, j is a suitable function and R0 is a reference length, usually the

major radius of the vacuum chamber. This choice has the advantage of de-

pending on a very small number of parameters (i. e. λ, β0, αm and αn) once

the function j(ψ̄, αm, αn) has been chosen. These parameters can be related

to the physical quantities Ip, βp, li and q0 (i. e. plasma current, poloidal beta,

normalized internal inductance and safety factor at the magnetic axis)9. The

choice made in the CREATE-L code [1] is

j = (1− ψ̄αm)αn

With this choice, the current density at the plasma boundary is automati-

cally zero, Ip is mainly related to λ, β0 can be linked to βp and li and the

safety factor depends on the values of the αm, αn parameters. Indeed, λ can

be seen as a normalization factor in the equation

Ip =

∫
ΩP

JφdΩ

9 Ip, βp, li can be obtained from external magnetic measurements. In particular, Ip can
be obtained directly from a Rogowski loop, or from magnetic field measurements via
Ampère’s law, while for plasmas with high aspect ratio and circular cross section the
sum βp + li/2 can be computed [93]. Furthermore, βp and li can be separated when
the circularity and high aspect ration hypotheses are dropped (see, for example, [92]).
Additional informations can be obtained when non-magnetic diagnostics are also used. For
a brief historical overview of the problem and more references on the argument, see [94].
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while li, defined as 10

li =
〈B2P〉VP
B2p(a)

is a measure of the "peakedness"11 of the profile [92]. Finally, βp is an adap-

tation of the β parameter introduced in equations (30)-(31), and is defined

as12

βp =
〈p〉VP
〈B2p〉/2µ0

A further simplifications is obtained by considering only three linear com-

binations of these parameters, neglecting the influence of q0 on the plasma-

external currents interactions. The core idea (as we will discuss in sec. 3.3)

is to consider the variations of poloidal beta and internal inductance as

external disturbances. For this reason, the parameters αm, αn and β0 are

assumed to be constant during the plasma discharge. However, while the

toroidal current density is held fixed, the total plasma current may vary,

since the evolution of λ is linked to Ohm’s law in the plasma region. For

this reason, the toroidal current density profile variations are not taken into

account in a self-consistent way; however, this is acceptable when dealing

with slow changes due to the external currents [1].

10 The internal inductance is defined as the part of the inductance obtained integrating over
the plasma volume

1

2
LiI
2
p =

∫
VP

B2

2µ0
dr

The definition of li follows by observing that only the poloidal component of the magnetic
field BP is significant in this definition.

11 From the Grad-Shafranov equation, it is clear that the distribution of the magnetic poloidal
field is due to the toroidal current density distribution. If this current is driven by an elec-
tric field (i. e. in ohmic plasma discharges), the current profile can be assumed to be peaked
in the center, since conductivity is proportional to T3/2 [56] and the plasma is hotter in the
core region. More complicated profiles prove useful in the case of non-inductive current
drive sources, especially if these are used to achieve AT scenarios (where internal transport
barriers are present, which can be linked to steep pressure gradients at the plasma edge).

12 Actually, different definitions exist in the community for βp and li; see sec. 6.4.2.
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A final remark before moving on to discuss the numerical solution to

the MHD equilibrium problem. We discussed how Jφ is completely char-

acterized, in the plasma region, by the three parameters Ip, βp, li. On the

other hand, the toroidal current density in the external conductors is known

once that the total currents flowing into the circuits have been assigned.

Thus, if the two vectors x = (I1, I2, ..., Ip)T and w = (αm, αn, β0)
T are as-

signed, the flux distribution can be computed together with the quantities

q = (ψa, ψb, λ). In this view, x and w can be regarded as state variables.

This will be useful when the linearized equations for the evolutionary MHD

model will be recast into a standard state-space form. Furthermore, as we

said, we will focus on the x vector, treating the variations of s as external

disturbances (whose evolution in time will thus be assumed to be known a

priori).

3.2.2 FEM approach

We saw that the MHD axisymmetric equilibrium can be described by means

of the equation

Lψ = f(ψ) (60)

where

Lψ := −
∆∗ψ
r2

= ∇ ·
(∇ψ
r2

)
is an elliptic differential operator13 and

f :=
µ0Jφ

r

13 As before, we assumed µr = 1 for simplicity. The argument can be extended straightfor-
wardly to the case µr 6= 1.
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whose expression depends on the considered spatial region. For the ac-

tive external conductors (again, N represents the number of turns of the

conductor, I the current per turn, S the cross section)

Jφ =
NI

S

while, inside the plasma

Jφ = λ

[
β0
r

R0
+ (1−β0)

R0
r

]
(1− ψ̄αm)αn

The boundary conditions are given by ψ = 0 at r = 0 and r → ∞ (the

second one, in particular, can be approximated by assuming ψ = 0 for r

"large enough", leading to zero Dirichlet boundary conditions).

A possibility to solve this set of equations is to use a FEM, which allows to

turn the considered differential problem into a set of algebraic equations (if

starting from a steady-state problem) or Ordinary Differential Equations (if

the original problem has a dependence on time). In the second case, the ob-

tained set of equations can then be solved by means a numerical integration

scheme (e. g. forward or backward Euler, Crank-Nicholson, Runge-Kutta,

etc.). Linearity is preserved, in the sense that the obtained set of equations

(algebraic or ODEs) will be linear or not depending on the nature of the

original problem. In the case under exam, as it was discussed in sec. 3.1,

the problem is highly nonlinear and thus needs dedicated solving methods,

the most common being Picard or Newton-Raphson iterations (the latter is

the one adopted by CREATE-NL and CREATE-L). This section is intended

to give a brief and not rigorous overview of the FEM formulation in order

to discuss its benefits and drawbacks. The details are beyond the purpose

of this work; interested readers are referred to the classic text [95].
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Figure 32: Detail of a FEM mesh for the EAST tokamak.

First, the domain is divided into smaller subdomains (e. g. conductors,

passive structures14, vacuum, plasma, each characterized by different physi-

cal properties). Second, each of this regions is further subdivided into finite

elements (in our case triangular elements, see figs. 32-33). A set of shape

functions {vi} is then chosen (the function vi is associated to the i-th node

of the mesh). These functions are often piecewise polynomials (of 1st and

2nd order in the case of CREATE-L and CREATE-NL respectively), chosen

in such a way that each is equal to one in the corresponding i-th node and

zero in the adjacent ones (see fig. 33).

14 In what follows, a lumped parameter approach is used for the conducting walls of the
machine, which are discretized into a finite number of axisymmetric circuits. The sources
of non-axisymmetry (such as ports, tiles, etc.) are usually taken into account using an
equivalent section or equivalent parameters for the circuit. See for example [96] for an
equivalent axisymmetric description of the iron core of the JET tokamak, an eight-limbed
magnetic circuit far from being axisymmetric (see fig. 22).
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Figure 33: A 1st order finite element over a triangular mesh.

We can recast the differential problem (60) in a so called weak form by multi-

plying both sides of the equation times a test function u ∈ H and integrating

over the domain (this is equivalent to taking the L2 scalar product 〈·, u〉):∫ ∫
Ω
Lψ udΩ =

∫ ∫
Ω
f udΩ (61)

Integrating by parts, we can move one derivative from the unknown solu-

tion to the test function∫ ∫
Ω
−

[
∇ ·
(∇ψ
r2

)]
udΩ = −

∮
∂Ω

u

r2
∇ψ · dS +

∫ ∫
Ω

∇ψ · ∇u
r2

dΩ

In the simple case of zero Dirichlet boundary conditions, we can assume

u,ψ = 0 on ∂Ω. The surface term in the previous equation vanishes, and a

weak formulation of eq. (61) is obtainedWeak formulation ∫ ∫
Ω

∇ψ · ∇u
r2

=

∫ ∫
Ω
f udΩ (62)

A weak solution to our problem will be a function ψ which satisfies eq. (62)

∀u ∈ H.

The core idea is to set the problem in a Hilbert space15 (let us call it H),

where a scalar product is defined (usually the L2 product). If we consider a

basis {ϕi}i∈N for this space H, and denote the scalar product by 〈·, ·〉, we can

15 In particular, ψ and u are supposed to be in the Sobolev space H10(Ω), while Jφ ∈ L2(Ω).
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decompose any function h ∈ H into a linear combination of base functions.

In particular, it holds

ψ =
∑
i∈N

ψiϕi ψi = 〈ψ,ϕi〉

Moreover, the condition 〈Lψ, u〉 = 〈f, u〉 ∀u ∈ H can be rewritten as

〈Lψ,ϕj〉 = 〈f, ϕj〉 ∀ϕj, since any function u ∈ H can be written as a linear

combination of elements of the base. Hence, the problem becomes

∑
i

ψi

∫ ∫
Ω

∇ϕi · ∇ϕj
r2

dΩ =

∫ ∫
Ω
fϕjdΩ =: fj

If we approximate the basis {ϕi}i∈N with a finite set of functions, we obtain

the set of algebraic equations

Aψ = f (63)

where ψ is a vector containing the unknown coefficients ψi (which repre-

sent the value of ψ at the i-th node if linear lagrangian elements are con-

sidered), f(ψ) is a vector containing the terms 〈f, ϕj〉 (which are known if

the toroidal current density profile is assigned) and A is the stiffness matrix

associated to the problem, which in this case is defined by

Ai,j =

∫ ∫
Ω

∇ϕi · ∇ϕj
r2

dΩ

The last step is to chose as a base the set of shape functions {vi} defined

over the mesh (usually, this set tends to a complete base when the size of

the element tends to zero).

As it was already discussed, eq. (63) is nonlinear, and in general has to

be solved by iterative procedures (i. e. Newton-Raphson iterations in both

CREATE-L and CREATE-NL).
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The main advantages of the FEM formulation are the possibility of deal-

ing with complicated geometries and materials with different characteris-

tics, the capability of capturing local phenomena, a good degree of accuracy

and the possibility of obtaining an estimate of the error. On the other hand,

they require long computation times; furthermore, the geometry of the sep-

aratrix is not accurate close to the X-point (which is necessarily a node,

which means that the elements must be very small near to the null point)

and the accuracy can be poor when the toroidal current density has steep

gradients or discontinuities.

3.3 linearization

Now that we have a complete formulation of the stationary MHD equi-

librium problem under the axisymmetry hypothesis and we know how to

solve the equations once that the source terms have been specified, the next

step is to move on to discuss the evolutionary equilibrium problem. In par-

ticular, our final aim is to obtain a canonical state-space form describing the

time evolution of the tokamak system by exploiting a linearization proce-

dure around the considered equilibrium.

The differential operator ∆∗ can be characterized in terms of its free space

Green function G0(r, z), i. e. the distribution which satisfies

∆∗G0(r, r ′) = −µ0rδ(r − r ′)

and the boundary conditions

lim
r→∞G0(r, r ′) = 0 if ‖r ′‖ < M ∈ R

lim
r→0

G0(r, r ′) = 0 if ‖r ′‖ > M ∈ R − {0}
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where δ is the Dirac’s delta and r = (r, z). An expression for G0 with a

detailed derivation can be found in the appendix of [97]. G0(r, r ′) represents

the poloidal flux produced at the location r by a filamentary toroidal current

passing through the point r ′.

We can now write the poloidal flux as

ψ(r, t) =
∫

R2
Jφ(r ′, t)G0(r, r ′)dr ′

=

∫
Ωm

Jφ(r ′, t)G0(r, r ′)dr ′ +
∫
Ωp

Jφ(r ′, t)G0(r, r ′)dr ′

= ψm(r, t) +ψp(r, t)

where Ωm and Ωp are the poloidal cross sections of the conductive struc-

tures (including the PFCs, i. e. the union of Ωc and Ωi with i = 1...N) and

of the plasma respectively.

We can express the induced toroidal electric field using Faraday’s law as

Ei = −
1

r

∂

∂t
ψ

The toroidal current density can be expressed as

Jφ = σEφ = σ(Ei + Em)

where Em is the toroidal component of the electromotive field supplied to

the conductors (which is zero for the passive structures) and σ represents

the conductivity. From Ampére’s law we obtain

2πrJφ = −2πσ
∂

∂t
ψ+ σV ⇒ 1

σ
Jφ =

1

r

∂

∂t
ψ+

1

2πr
V (64)

where

V =

∮
Γ(r)

Em · dl =
∫2π
0
Emrdφ
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Let us start by considering the contribution from the conducting struc-

tures. If V is assumed to be constant in each conductor, we can use the

characteristic functions of the associated regions to rewrite it as

V(t, r) =
N∑
i=1

Vi(t)gi(r)

where N is the number of active external circuits and gi(r) is 1 inside the

i-th conductor cross section and 0 outside.

From the finite element formulation of the problem we can recast the Jφ
term in the form

Jφ(t, r) =
nc∑
h=1

Jh(t)vi(r)

where nc is the number of shape functions. In particular, we will consider

the functions vh whose supports cover the region Ωm.

We obtain

ψm(r, t) =
∫
Ωm

Jφ(r ′, t)G0(r, r ′)dr ′

=

nc∑
i=1

Ji(t)

∫
Ωm

vh(r ′)G0(r, r ′)dr ′

=

nc∑
i=1

Ji(t)ṽh

Furthermore, by multiplying eq. (64) by a generic shape function vh and

integrating over the volume Vm obtained by the rotation of Ωm around the

axis of the torus, we have∫
Vm

1

σ
Jφdτ =

∫
Vm

1

r

∂

∂t
ψdτ+

∫
Vm

1

2πr
Vdτ (65)
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The terms appearing in the above equation can be written as

∫
Vm

1

σ
Jφvhdτ =

nc∑
k=1

Jk(t)

∫
Vm

vkvh
σ
dτ =

nc∑
k=1

RhkJk(t) (66)

∫
Vm

1

r

∂

∂t
vhψdτ =

nc∑
k=1

J̇k(t)

∫
Vm

ṽkvh
r
dτ =

nc∑
k=1

LhkJ̇k(t) (67)

∫
Vm

1

2πr
Vvhψdτ =

1

2π

N∑
l=1

Vl

∫
Vm

glvh
r
dτ =

N∑
l=1

ShlVl (68)

(the dot indicates a time derivative).

Putting together equations (65)-(68) we obtain

nc∑
k=1

[
RhkJk(t) + LhkJ̇k(t)

]
=

N∑
l=1

ShlVl

or, in matrix form Plasmaless circuit

equations

RI(t) + Lİ(t) = SV (69)

The equations have the form of the usual circuit equations, where L is

the inductance matrix (the element on the diagonal are the self inductances

while the off-diagonal ones are the mutual inductances) and R is the (di-

agonal) resistance matrix. Considering the elements contained in the cross-

section of each poloidal conductor and assuming the current distribution

in each of the conductors to be constant, eq. (69) can be rewritten in such a

way that the terms in the I vector correspond to the physical currents flow-

ing into the active and passive circuits (see [97]). Generally speaking, the

vector I contains ~100-200 elements, depending on how the passive struc-

tures have been discretized. The S matrix, instead, is usually exploited to

keep track of the sign between the voltage and the current for each circuit;

in what follows, we will assume that it is the identity matrix.



90 plasma modelling

When the effect of the plasma is taken into account, an additional term

appears in eq. (69)

RI(t) + Lİ(t) + ψ̇p = SV

ψ̇p is a vector whose elements are

ψ̇ph := 2π

∫
Ωm

ψpvhdΩ

The value of ψ̇p can be computed solving the nonlinear equilibrium prob-

lem presented in sec. 3.1, and will be a function of the external currents

(which we indicated with x), the total plasma current Ip and the vector

w = (βp, li)

ψ̇p(r, t) = γ(r, x(t),w(t), Ip(t))

Finally, defining

I = I0 + δI

w = w0 + δw

Ip = Ip0 + δIp

V = V0 + δV

(where the subscript 0 refers to the reference equilibrium) a linearized

plasma response model can be obtained asLinearized plasma

response (
L+

[
∂

∂I
γ

]
0

)
δİ +

[
∂

∂Ip
γ

]
0

δİp

[
∂

∂w
γ

]
0

δẇ + RδI = SδV (70)
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The final step is to put the model into the standard state-space form

δẋ = Aδx +Bδu + Eδẇ (71)

δy = Cδx +Dδu + Fδẇ (72)

If we define

δx = (δI δIp)T

L∗ =
(
L+

[[
∂

∂I
γ

]
0

[
∂

∂Ip
γ

]
0

])

LE =

[
∂

∂w
γ

]
0

δu = δV

Eq. (70) becomes

L∗δẋ + Rδx + LEδẇ = Sδu (73)

The state-space equations (71)-(72) can be obtained putting

A = −L∗−1R

B = L∗−1S

E = −L∗−1LE

The C and F matrices can be obtained by perturbing the plasma equilib-

rium evaluating how the chosen outputs (i. e. plasma centroid, geometrical

descriptors of the shape, X-point(s) position, simulated magnetic measure-

ments, etc.) are modified by a variation of one of the state variables. The D

matrix is usually the zero matrix. The only difficulty left is that the plasma

current variation here appears as an input parameter; however, since it is

one of the variables that need to be controlled, a relation between δIp and
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the variation of the other state variables must be established. This can be

done, for example, taking into account the conservation of some physical

quantity and neglecting the plasma resistance (see [97]).

In practice, the resistance matrix is usually a known parameter, while

the inductance matrix L can be computed starting from the geometry of

the machine. L∗ is a modified inductance matrix that takes into account

the effect of the plasma (which is a non-fixed deformable conductor). The S

matrix can be subdivided into two blocks, corresponding to the identity ma-

trix (linking the voltages applied to the active circuits to the corresponding

currents) and the zero matrix (on the rows corresponding to the passive

circuits). It must be kept in mind that, although in principle δw should

be part of the system state, our description of the evolution of βp and li
is not self-consistent. Thus, their variation will be considered as an exoge-

nous disturbance to be rejected by the control system. Finally, until now we

neglected the plasma resistance. An estimate of the overall resistive losses

can be obtained by taking into account the flux consumption (i. e. during an

experiment with similar plasma conditions). This estimate may take into ac-

count also the effect of external current drive sources. Both CREATE-L and

CREATE-NL can provide linearized models around a given equilibrium. In

particular, CREATE-L exploits an analytical procedure, while the lineariza-

tion is carried out in a purely numerical way by CREATE-NL. Interested

readers are referred to [1, 90] for further details.
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E L E C T R O M A G N E T I C C O N T R O L

"Trust is good, control is better."

— Vladimir Ilic Ul’Janov (Lenin)

Broadly speaking, the control problem in a tokamak reactor can be sep-

arated into two major aspects: electromagnetic control and kinetic control.

Kinetic control mainly deals with the exploitation of particle feed rates

and/or auxiliary heating and current drive systems to modify the plasma

internal profiles in terms of density, temperature, pressure, current density.

Although some basic problems in kinetic control have been solved (e. g. the

control of plasma density, the use of additional heating systems to achieve

H-mode, etc.), other are still an open research topic, and become particu-

larly important in view of AT scenarios. However, plasma kinetic control is

beyond the purpose of this thesis; an overview on the subject can be found

in [98].

On the other hand, electromagnetic control -or just magnetic control, as it

is often referred to- consists in the exploitation of the PFC system to man-

tain or modify the plasma current, position and shape. Along with these

primary tasks, some additional requirements need to be met, i. e. vertical

stabilization in the case of elongated plasmas and an effective control of the

currents flowing in the PFCs. Magnetic control is a a core aspect of plasma

control, and it has reached a good degree of maturity over the last years. A

good overview on the subject can be found in [97].

The main objectives of magnetic control are:

• Vertical stabilization: since the first pioneering article by Artsimovich

and Shafranov [61] was published in 1972, vertically elongated plas-
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mas have been adopted in many fusion devices to improve the achiev-

able performances in terms of MHD stability. However, these plasmas

are not vertically stable, posing a limit to the maximum elongation of

the plasma. Indeed, it can be shown by simple arguments that they

are unstable against n = 0 axysimmetric perturbations (i. e. a uniform

vertical displacement)1. Imagine the plasma as a wire kept in equilib-

rium by two equally spaced conductors (see fig. 34). The elongated

cross section results from the forces exerted by these conductors on

the plasma, which pull upwards and downwards respectively. When a

small vertical displacement of the plasma is considered, a net vertical

force in the same direction of the displacement is produced.

Figure 34: Simplified physical picture of elongated plasmas vertical instability.

In principle, this instability could be eliminated by surrounding the

plasma with a perfectly conducting wall. However, in practice resis-

tive walls are only able to slow down the instability2 (which in this

case goes under the name of Resistive Wall Mode (RWM)), and active

stabilization methods are necessary. The simplest model of a vertically

unstable plasma which can be used for control design is the rigid dis-

placement model [99, 100], which is obtained by treating the plasma

1 A more detailed physical picture can be found in [77].
2 Which would be otherwise uncontrollable. As it was discussed at in sec. 3.1, plasma inertia

is very small; in fact, the characteristic time scales -usually referred to as Alfvén time- are
of the order of 1− 10µs for large tokamaks; this allowed us to assume a quasi-stationary
evolution of the plasma. The other side of the coin is that the Alfvén time scale is also
characteristic of the axisymmetric vertical instability, which is extremely fast in the no-
wall limit.
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as a filamentary current-carrying wire. However, it was shown [101]

that this model leads to uncorrect estimates of the instability growth

rate and inaccurate modelling of the magnetic diagnostics used for

the stabilization. A more complete description of the vertically un-

stable plasma can be obtained by means of a perturbed equilibrium

approach.

• Plasma current control: the ohmic drop of the plasma is compensated

by means of ramping currents in the surrounding coils (especially

in the CS), which are usually preprogrammed before the discharge.

However, plasma resistance may vary during the pulse, due to mod-

ifications in plasma conditions (e. g. temperature); furthermore, the

switching on of an external current drive during the pulse may re-

sult into a reduction of the fraction of inductive plasma current of an

amount which may be difficult to estimate a priori. For these reasons,

a feedback control is necessary to keep the plasma current at the de-

sired value. The plasma current is usually measured by means of a

dedicated Rogowski coil [102] or integrating magnetic measurements

along the vacuum chamber.

• Position control: the position of the plasma centroid is adjusted by

means of suitable currents in the PFCs. This is a very basic way of

controlling the plasma, often used for circular cross sections or in the

early phases of a discharge. The centroid position is often estimated

as a linear combination of magnetic diagnostics, which sense the per-

turbation of the magnetic field due to plasma displacement. The com-

bination of plasma current and position control is often referred to as

RZIp control.

• Shape control: controlling the shape of the LCFS has many benefits. As

we said, MHD stability could be improved by an elongated cross sec-

tion. An accurately shaped LCFS may result into improved confine-

ment of energy and particles [103]. Moreover, sweeping the strike
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points position on the divertor plates could spread more evenly the

power deposition [104, 105]. The distributed nature of the problem

is usually tackled by defining a discrete set of variables to be con-

trolled by means of model-based multivariable techniques. The two

main shape control approaches are gap control, where the controlled

variables are plasma-wall gaps, and isoflux control, where the X-point

position is controlled and the differences between the poloidal flux at

a set of desired boundary points and the flux at the target X-point

position are regulated to zero. An additional complication arises due

to the fact that the shape of the LCFS cannot be measured directly, and

must be estimated by means of reconstruction codes from the avail-

able magnetic measurements [85–87].



5
P R O P O S A L F O R A P L A S M A M A G N E T I C C O N T R O L

A R C H I T E C T U R E

"The yielding overcomes the stiff."

— Lao Tzu

In chapter 4 the main problems related to plasma magnetic control were

presented. A possible control architecture is shown in fig. 35; the proposed

solution contains a dedicated block for each of the control problems listed.

Figure 35: Proposed architecture for the magnetic control system. The main blocks
are shown. The scenario currents represent the PF nominal currents
(courtesy of prof. G. De Tommasi).

In particular, the proposed control system consists of

97
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• a Vertical Stabilization System, which takes care of stabilizing the

elongated plasma. In modern tokamaks, this system usually exploits

a set of dedicated circuits as actuators, which often includes at least

a pair of in-vessel coils. In order to separate the vertical stabilization

from the position/shape controller, only the vertical velocity of the

plasma is fed back to this system, i. e. the plasma is only stopped

by the Vertical Stabilization (VS), while the task of bringing it to its

desired vertical position is left to the position/shape control;

• a PF Current Decoupling Controller, which constitutes the inner con-

trol loop of a nested architecture that includes the plasma current

and position/shape controllers as outer loops. This controller takes

care of tracking the PFC current references, obtained as the sum of the

preprogrammed scenario current and of the corrections computed by

the outer loops. This controller is designed in a Multi-Input-Multi-

Output (MIMO) fashion, with the aim of decoupling the dynamic re-

sponse of the PFCs;

• a Plasma Current Controller, which tracks the plasma current refer-

ence by generating additional requests for the PFC Decoupling Con-

troller;

• a Plasma Shape Controller, which controls the shape of the LCFS by

generating additional requests for the PFC Decoupling Controller. This

block could be replaced by a simpler Position Controller, i. e. in the

early phases of a discharge.

More details on the control algorithms proposed for each of the main

blocks shown in fig. 35 are given in the rest of this chapter.
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5.1 vertical stabilization

Generally speaking, the vertical stabilization problem is solved by driv-

ing suitable currents into a set of dedicated circuits. Often, in modern de-

vices, these circuits are in-vessel copper coils, which are capable of pro-

viding a faster control action since they are not shielded by the conduc-

tive structures surrounding the plasma. The current driven in these circuits

must produce a radial magnetic field in order to influence the vertical move-

ment of the plasma, so often these coils are connected in anti-series. A gen-

eral control law for the VS system is given by

VICref(s) = FVS(s) · (KV · Ipref · Vc(s) +KIC · IIC(s)) (74)

where VICref is the voltage request to the in-vessel circuits power supplies,

IIC is the current flowing in the in-vessel coil and Vc is the plasma vertical

speed. The controller parameters are the current gain KIC and the velocity

gain KV , along with the transfer function FVS(s), which represents a dy-

namic compensator (usually a lead network [106, Section 2.6.5]) that can

be adjusted so as to improve the controller performances. The KV gain is

multiplied times the plasma current reference Ipref in order to adapt to dif-

ferent plasma conditions (it is assumed that the plasma current controller

is capable of tracking its reference with a small steady-state error).

In some cases, additional ex-vessel coils are used in order to satisfy the

control requirements. This is true, for example, for the ITER tokamak, where

the use of an additional ex-vessel coil is foreseen. In this case, the control

law for this coils is chosen as

VEC(s) = KEC · IIC(s) (75)

It can be seen how the slower ex-vessel coil is used to reduce the current

request to the internal coils, which in turn are in charge of controlling the

vertical speed of the plasma.
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It is worth to remark that the proposed VS system consists of a first order

Multi-Input-Single-Output (MISO) controller, whose output is the voltage

request to the in-vessel coils. The quite simple structure of this solution

opens up the possibility of implementing adaptive algorithms and/or effec-

tive noise rejection strategies. The controller can be designed on the basis

of the state-space model (71)-(72). Further details on the VS system design

will be given in sec. 7.1.

5.2 poloidal field coils current controller

Usually, the starting point for the design of this controller is a plasma-

less model of the device, which can be written in the following form

Lẋ(t) + Rx(t) = u(t) , (76)

L and R are the inductance and resistance matrices, x(t) is the state vec-

tor, containing the current in the circuits (both active and passive) and u(t)

is the input vector, which contains the voltages applied to the circuits (as-

sumed equal to zero for the passive structures; see also sec. 3.3, eq. (69)).

For the design of the controller, a modified version L̃PF ∈ RnPF ×RnPF of

the inductance matrix is considered, where only the nPF active PF circuits

are taken into account, while the effect of the passive structures is neglected.

In order to minimize the control effort, in each row of L̃PF, the mutual

inductance terms lower than a given threshold (chosen equal to the 10% of

the corresponding circuit self-inductance) are also neglected. In this way,

the current in each circuit will be controlled by acting only on the coils

which have a stronger coupling to it. This device prevents situations in

which a high control effort -which may turn into voltages saturation- is

applied to obtain a very low effect on the controlled current, without any

practical improvement in the controller performances.
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5.2.1 Proportional control

Let us start by considering the simple case of a purely proportional

controller. Given the time constants τPFi for the response of the i-th circuit,

we can define the matrix

Λ =


1/τPF1 0 ... 0

0 1/τPF2 ... 0

... ... ... ...

0 0 ... 1/τPFn


Note that, in order to have the same dynamic response on all the PF circuits,

the time constants τPFi should all be equal to the same value. The voltage

requests for the PFC power supplies can be then computed as Proportional PFC

current controller

VPF(t) = KPF ·
(
IPFref(t) − IPF(t)

)
+ R̃PFIPF(t) (77)

where R̃PF ∈ RnPF×nPF is estimated matrix of the PF circuit resistances, and

the control gain matrix KPF is given by

KPF = L̃PF ·Λ

The estimation of the PFC resistances can be usually performed with good

accuracy, which means R̃PF ∼= RPF. Plugging (77) into (76) and assuming

L̃PF = LPF, we obtain the closed loop behaviour

İPF(t) = Λ ·
(
IPFref(t) − IPF(t)

)
.

which in terms of error dynamics (if a constant reference is assumed, i. e.

İPFref
∼= 0) means

ėPF(t) = −Λ · ePF(t) (78)
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Since Λ is diagonal, the control law (77) assures the desired decoupling.

It is worth to notice that, if the resistance estimate is accurate, the feed-

forward compensation term R̃PFIPF(t) allows to treat the behaviour of any

coil as that of a superconductor. Furthermore, when the decoupling action

provided by the L̃PF matrix is taken into account, the dynamic response

of the coils becomes that of pure integrators (as it appears clearly from

eq. (78)). The possibility of tuning the controller on a simple transfer func-

tion such as that of an integrator (i. e. 1/s) makes the design much easier;

furthermore, the extremely simple description of this inner control loop

simplifies dramatically the design of the outer ones (as it will be discussed

in sec. 5.5).

5.2.2 PID control

The architecture proposed in sec. 5.2.1 can be slightly modified in or-

der to provide more flexibility. A diagonal matrix PID(s) containing the

parameters of a set of Proportional-Integral-Derivative (PID) controllers can

be applied to the PFC current errors, in order to impose a desired dynamic

to the controlled circuits. In general, the derivative action is not necessary,

i. e.

PID(s) = PI(s) =


Kp,1 +

Ki,1
s 0 ... 0

0 Kp,2 +
Ki,2
s ... 0

... ... ... ...

0 0 ... Kp,nPF +
Ki,nPF
s


The control law becomes

VPF(t) = L̃PF · PI(s) ·
(
IPFref(t) − IPF(t)

)
+ R̃PFIPF(t) (79)
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Another possibility is to implement the control law

VPF(t) = diag(L̃PF) ·PI(s) ·
(
IPFref(t) − IPF(t)

)
+M̃PF · İPF(t)+ R̃PFIPF(t) (80)

where diag(L̃PF) is the diagonal matrix containing the PFC self inductances

and M̃PF = (L̃PF − diag(L̃PF)) contains the off diagonal terms. With this

approach, the cross-coupling term in the circuit equation is directly com-

pensated by means of the term MİPF. This control method has the main

disadvantage of needing an evaluation of the time derivative of the PFC

currents, which needs a suitable filtering strategy in order to avoid large

control voltages due to noisy measurements.

A third possibility, which summarizes the previous two, is to adopt the

control law General PFC current

controller with PIDs

VPF(s) = G1 · PI(s) · (IPFref(s) − IPF(s)) + sG2IPF(s) +G3IPF(s) (81)

By setting

G1 = L̃PF , G2 = 0 , G3 = R̃PF

eq. (79) is recovered, while by setting

G1 = diag(L̃PF) , G2 = M̃PF , G3 = R̃PF

we recover eq. (80).

5.3 plasma current controller

The Plasma Current Controller is the first of the feedback loops that gen-

erate requests to the PFC current controller. It receives as input the plasma

current and the corresponding reference waveform, and it computes the PF

current deviations needed to obtain the desired Ip.
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Let kpcurr ∈ RnPF be the vector of PFC currents which causes a unitary

flux variation along a closed line containing the foreseen plasma boundary;

the elements in kpcurr can be obtained via an optimization procedure based

on the plasmaless model (76).

This combination of currents influences the plasma current while keeping

the effect on the shape small. For this reason, the elements in kpcurr are often

called transformer currents. It follows that the kpcurr vector can be used to

design a plasma current control algorithm that has a loose coupling with

the plasma shape controller. In particular, this objective can be achieved by

considering the following Single-Input-Multiple-Output (SIMO) control law

δIPF(s) = kpcurr · FIp(s) · (Ipref(s) − Ip(s)) (82)

where FIp(s) is the controller transfer function, which has a Single-Input-

Single-Output (SISO) structure. Usually a PID regulator is chosen, the inte-

gral action assuring zero steady state error at the flat-top; different choices

for FIp(s) can be considered when special requirements need to be met1. If

an iron core is present (i. e. as in the JET tokamak), the transformer field

is usually obtained by driving the current in the central solenoid, thus

the kpcurr becomes a scalar and the control law (82) simplifies to a SISO

one [108].

5.4 plasma position controller

To influence plasma vertical and radial position, radial and vertical fields

are needed respectively. A possible approach to plasma position control is

to choose linear combinations of currents which provide these two field sep-

arately; this proves particularly convenient for up-down symmetric devices.

1 For instance, for ITER it is important to track the reference with zero error also during the
ramp-up and ramp-down phases; for this reason, FIp(s) must be designed with a double
integral action [107].
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In this way, the vertical and radial position control problems can be natu-

rally decoupled, and simple SIMO controllers can be designed for both the

centroid coordinates, in a way similar to what has been discussed in sec. 5.3

for the plasma current. Plasma position can be estimated on the basis on

magnetic measurements, hence a reconstruction code is not needed for this

kind of control2.

5.5 plasma shape controller

From the linearized model output equation (72) it follows that the shape

descriptors variations can be linked to the PFC currents variations by the

static relation

δY(s) = CδIPF(s)

where δY(s) contains the variations of the nG shape descriptors (which can

include flux differences, gaps, X-point(s) coordinates, etc.). The additional

current references to be sent to the PFC current controller can be computed

as

δIPFref = C
†δY

where C† denotes the pseudo-inverse of the output matrix C. The pseudo-

inverse matrix3 can be computed starting from the Singular Value Decom-

position (SVD)

C = USVT

2 Alternatively, an approach similar to the one proposed in sec. 5.5 could be considered,
which may include also the plasma current control.

3 It is good practice to include the row relative to the plasma current in the C matrix when
designing the controller and removing the corresponding column from the pseudo-inverse
matrix. In this way, the shape controller will be automatically decoupled from the plasma
current.
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where U ∈ RnG×nG and V ∈ RnPF×nPF are two orthogonal matrices S ∈
RnG×nPF is a diagonal matrix. In particular:

• the columns of U are the left singular vectors of C, i. e. the eigenvectors

of CCT ;

• the columns of V are the right singular vectors of C, i. e. the eigenvectors

of CTC;

• the elements on the diagonal of S are the singular values of C, i. e. the

eigenvalues of CCT and CTC

Two additional diagonal matrices can be introduced to assign different

weights to some of the shape descriptors or to some of the actuators

C̃ = QCR

In this case, the SVD of the C̃ matrix can be considered4

C̃ = USVT

The proposed algorithm can control up to nPF linear combinations of

shape descriptors. However, in principle the number of these descriptors

might be greater than the number of available actuators, i. e. nG > nPF.

In this case, it can be shown that the controlling to zero the error on the

nPF linear combinations C†δY is equivalent to minimizing the steady-state

performance index5

JXSC = lim
t→+∞(δYref − δY(t))TQTQ(δYref − δY(t)) (83)

where δYref are constant references for the geometrical descriptors. The

performance index (83) reduces to the least square error when Q = InG .

4 With a slight abuse of notation, we will use the same symbols for the matrices appearing
in the SVDs of both C and C̃. The difference will be clear from the context.

5 The argument is the same used to prove that a pseudo-inverse matrix can be used to
minimize the mean square error in a linear regression problem.
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In order to avoid large control actions, a truncated SVD can be considered

by neglecting the singular values which are lower than a given threshold

(in a way similar to what has been done for the L̃PF matrix in sec. 5.2; see

also sec. 7.4.2 for an example).

The argument above holds for the steady-state performance of the con-

troller. For what concerns the dynamic behaviour, when a PFC decoupling

controller like the one proposed in sec. 5.2 is considered, the closed loop

dynamics of the PFC currents is known

δIPFi(s) = Gi(s) δIPFref,i(s)

where Gi(s) is the closed loop transfer function for the i-th PF coil obtained

with the PFC current control. If all of the PFCs’ responses are characterized

by the same transfer function (i. e. Gi(s) = G(s) ∀i = 1 , ... , nPF), for the

shape descriptors it holds that

δY(s) = C δIPF(s) = C G(s) δIPFref(s)

Thus, all the quantities in δY(s) have the same dynamics of the PFC currents;

furthermore, the transfer function describing these dynamics is the same for

all of the elements in δY(s) and has a simple form (in general that of a 1st

or 2nd order system) yielded by the choice of the PFC regulator.

The response of the PFCs can be further adjusted by an additional set of

nPF PID controllers, as shown in fig. 36.

If we collect these controllers into a transfer matrix PID(s), we obtain

δIPFref = PID(s) C† (δYref(s) − δY(s))
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Figure 36: Block diagram of an XSC-like shape controller. The pseudo-inverse C† is
usually computed using the largest singular values that result from the
SVD of the C matrix.

However, if the PID controllers are all equal, they can be treated as a scalar

and moved to the right of the C† matrix, yielding

δY(s) = G(s) C C† PID(s) δ(δYref(s) − δY(s))

= G(s)PID(s)(δYref(s) − δY(s))

In this way, the loop function for each of the shape descriptors is given

by the simple SISO transfer function G(s)PID(s), which can be adjusted

by choosing the PID parameters on the basis classical control engineering

techniques.

The adopted approach owes to that of the eXtreme Shape Controller

(XSC), implemented and tested at JET; interested readers are referred to [4,

109–112].
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T H E E A S T T O K A M A K

"If a craftsman wants to do good work,

he must first sharpen his tools."

— Confucius

6.1 motivation

One of the main technical challenges for the successful operation of a

proper fusion plant resides in the problem of power exhaust handling.

Nowadays, the technological limit for the heat flux over a tokamak’s di-

vertor plates is 5− 10MWm−2; however, in the current optimal scenario for

a reactor such as DEMO, heat fluxes on the divertor plates up to 50MWm−2

are foreseen. One of the goals of the ITER project is to assess the possibil-

ity of mitigating the heat loads on the divertor targets by increasing core

plasma radiation or producing detached divertor conditions. However, a

risk remains that these solutions might not scale up to DEMO. For this

reason, the investigation of alternative solutions to the divertor power ex-

haust problem has been included in the EFDA roadmap to fusion electric-

ity [113]. One possibility is to exploit alternative magnetic divertor config-

urations, such as the snowflake [114, 115] or the super-X [116] divertor. In

the roadmap document we read:

«Some concepts are already being tested at proof-of-principle level in 6 1MA devices
(examples are super-X, snowflake, liquid metals). These concepts will need not only to pass
the proof-of-principle test but also an assessment of their technical feasibility [...]. The goal
is to bring at least one of the alternative strategies (or a combination of baseline and some
alternative strategy) to a sufficient level of maturity by 2030 [...].»

111
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With this perspective, in 2014-2015 the possibility of realizing and con-

trolling a two-null-points divertor configuration was explored at the EAST

tokamak [117]. During these preliminary experiments, a heat flux reduction

on the divertor plates was observed; however, the position of the secondary

null point was not controlled in feedback. To conduct further studies, the

need for a dedicated feedback control system arose; this need led to the

opportunity of improving the existing EAST magnetic control system in or-

der to make the closed-loop control of alternative divertor configurations

possible.

6.2 description of the machine

EAST is an experimental fusion device site in Hefei, China. It entered

into operation in 2006, and it is the first tokamak operating with both

poloidal and toroidal superconducting coils, aiming to reach a pulse du-

ration of ~1000s. It has a D-shaped poloidal cross section, a double layer

vacuum vessel, a major radius of 1.85 meters, a minor radius of 0.45 me-

ters and a toroidal field of 3.5 Teslas. EAST experiments are conducted by

the Hefei-based institute of Plasma Physics under the Chinese Academy of

Sciences.

The EAST device is equipped with 14 PFCs driven by 12 individual power

supplies; coil pairs PF7/PF9 and PF8/PF10 are connected in series and

treated as a single circuit. The PF coils are designed to fulfill both the

plasma current and the position/shape control tasks; this approach brings

along the drawback of an additional challenge in the controller design.

Moreover, two copper coils (named IC1 and IC2) connected in anti-series

are installed inside the vacuum vessel in order to provide a faster control

action for the plasma vertical stabilization. The coils layout is shown in the

fig. 37.



6.3 electromagnetic modeling 113

Fig. 37 shows also the position of the magnetic diagnostics: EAST is

equipped with 37 flux loops and 38 poloidal field sensors, which can be

exploited for magnetic control purposes.

EAST has many technical similarities with the ITER tokamak (e.g. the same

distribution of toroidal and poloidal field coils and a similar vessel struc-

ture); this makes the experience achieved on this machine relevant in order

of a future reuse in the control of ITER1.

6.3 electromagnetic modeling

As a preliminary step, plasma equilibria and linearized models of the EAST

tokamak were obtained by means of the CREATE-L and CREATE-NL codes

and validated in open loop against experimental data.

The first validation step aimed at assessing the goodness of the relation

between the current variations in the active circuits and the outputs (i. e.

shape descriptors, magnetic probes, X-point position, etc.), taking into ac-

count also the dynamics of the eddy currents. To do so, it was necessary to

slightly modify the linearized model (equations (73)-(71)-(72)) to accept the

active coils currents as inputs2. This state transformation will prove useful

also for the simulation of the fast Z controller (see sec. 7.1.1).

The I current vector can be split as

I(t) = [ITVD ITCD]
T , (84)

where IVD and ICD indicate the currents in the voltage driven and cur-

rent driven circuits respectively. The voltage driven circuits also include the

1 The experimental data obtained at EAST are stored on a MDSplus [118, 119] server and
are freely accessible. Informations on the stored data can be found in an online handbook,
available at [120].

2 For simplicity, the S matrix in eq. (73) has been assumed to be the identity matrix, and the
voltages applied to the passive circuits have been assumed to be equal to zero.
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Figure 37: EAST poloidal cross-section. PF coils are shown in red. The green circles
indicate the position of the flux loops, while the pink squares show
position and orientation of the poloidal magnetic field probes.
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plasma3 and the passive elements where V = 0. Plasma-circuit equation can

be then rewritten asL11 L12

L21 L22

İVD

İCD

 = −

R11 0

0 R22

IVD

ICD

+

VVD

VCD

 . (85)

For the sake of simplicity, the disturbances have been neglected in this

discussion; they can be easily included in the input vector applying simple

matrix algebra to the equations (71), (72). Experimental traces of βp and li
are available in EAST’s EFIT database [121].

Let us introduce now the magnetic fluxes Ψ = LI, as the new state vari-

ables. ICD will be the new input vector, and Ψ can be written as

Ψ = L11IVD + L12ICD ⇒ IVD = L−111 Ψ− L−111 L12ICD . (86)

Plugging (86) in (85) we get:

Ψ̇ = −R11L
−1
11Ψ+ R11L

−1
11 L12ICD + VVD ⇒ Ψ̇ = AΨ+B

VVD

ICD

 , (87)

where:

• A = −R11L
−1
11 ;

• B =
[
I R11L

−1
11 L12

]
(I is the identity matrix);

For the output equation, substituting (86) into (72) we get:

y(t) = C1IVD +C2ICD +D1VVD ⇒ y(t) = CΨ+D

VVD

ICD

 , (88)

where:
3 The possibility to apply a "virtual" voltage to the plasma can be useful to simulate current

drive effects.
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• C = C1L
−1
11 ;

• D =
[
D1 C2 −C1L

−1
11 L12

]
.

This form of the state-space equations allows to use the measured cur-

rents in the active circuits as inputs to the linearized model, and to compare

the obtained output variations with the experimental data.

With the perspective of plasma shape control design and validation, a

grid of 30× 30 virtual flux loops placed all over the chamber has been in-

cluded among the outputs of the system. This allows to reconstruct in sim-

ulation the complete poloidal flux and field maps4 together with a set of

ancillary quantities, such as the X-points position. In fact, in the linearized

models only the position of one X-point is available, whereas we are in-

terested in dealing with magnetic configurations characterized by multiple

null points (see sec. 6.1). In principle, the X-points could be identified with

the locations of the chamber where both the poloidal field components are

zero; however, since the poloidal flux is known only in a discrete set of

positions, some further calculation is needed to obtain an accurate result.

In the surroundings of a null point, the flux can be approximated by a

quadratic expansion

ψ(r, z) = a2r+ brz+ cz2 + dr+ ez+ f .

To determine the coefficients vector [a b · · · f]T , the points of the grid

surrounding the expected X-point position have been considered. Since the

4 The reader might recall that the poloidal field is linked to the poloidal flux ψ by eq. (46).
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poloidal flux values at these locations are known quantities, the estimation

of the coefficients can be treated as a standard linear regression problem


r21 r1z1 z21 r1 z1 1

r22 r2z2 z22 r2 z2 1

... ... ... ... ... ...

r2n rnzn z2n rn zn 1





a

b

c

d

e

f


=


ψ(r1, z1)

ψ(r2, z2)

...

ψ(rn, zn)


⇒

⇒



a

b

c

d

e

f


=


r21 r1z1 z21 r1 z1 1

r22 r2z2 z22 r2 z2 1

... ... ... ... ... ...

r2n rnzn z2n rn zn 1



† 
ψ(r1, z1)

ψ(r2, z2)

...

ψ(rn, zn)


,

where [·]† denotes the Moore-Penrose pseudoinverse. The null point coordi-

nates (rxp, zxp) must satisfy the condition

∇ψ(rxp, zxp) =
∂ψ

∂r

∣∣∣∣r=rxp
z=zxp

r̂+
∂ψ

∂z

∣∣∣∣r=rxp
z=zxp

ẑ = 0 ,

which yields X-point position

estimation2a b

b 2c

rxp
zxp

+

d
e

 =

0
0

 ⇒

rxp
zxp

 = −

2a b

b 2c

−1 d
e

 .

The above equations also allow to compute the flux and the poloidal mag-

netic field at the null point. In fig. 38 the results of this procedure applied

to EAST Double Null (DN) pulse #46530 are shown. For this test, a 5× 5 grid

of virtual sensor spaced by ~5 cm has been placed in the region containing
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Figure 38: Static identification of active (left figure) and non active (right figure)
X-points for for EAST DN pulse #46530. The EFIT plasma boundary is
shown in blue (courtesy of dr. A. Castaldo).

the expected X-point position, and the flux map reconstruction provided

by the EFIT [121] code has been used. The resulting error between bound-

ary reconstruction performed by EFIT and the X-point position estimation

obtained with the above method is less than 1 mm for both the active and

non-active X-points (see fig. 38). 5

To conclude this section, experimental and open loop simulated plasma

current, radial and vertical position of plasma centroid, radial and vertical

position and flux of both active and non active X-point, magnetic field and

flux measurements and fluxes on control segments are shown in figs. 39-

44. Besides the currents on the active circuits, the open-loop system has

been fed the experimental poloidal beta and internal inductance variations.

An equivalent plasma voltage is also available among the system inputs,

which can be useful to take into account the effect of non inductive current

drive systems. Since elongated plasmas are vertically unstable (see chap. 4),

the unstable mode has been treated separately and simulated backwards in

5 It is worth to mention that the proposed method fails in the case of alternative configu-
rations with very close null points, such as the snowflake divertor. Indeed, in this case
a quadratic expansion is not sufficient to properly fit the flux map in the vicinity of the
null points. An alternative solution, which involves a higher order approximation of the
poloidal flux, has been proposed in [122] and used in [123].
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Figure 39: Comparison between simulated plasma current (green solid line) and
experimental plasma current (blue solid line) for pulse #69449 (courtesy
of dr. A. Castaldo).

time (in this way, the sign of the unstable eigenvalue is reversed. See [124]).

The slight mismatch between simulated and experimental results is related

to the estimation of the eddy currents in the passive structures and hence

to the estimated resistivity of the discretized vessel elements [125]

6.4 plasma control system

Fig. 45 shows a simplified block diagram of the EAST Plasma Control

System (PCS). The PCS has been adapted from the DIII-D one and is con-

tinuously updated to satisfy growing experimental needs [126–129]. The

control system has an inner PFC current control loop, which is in charge

of tracking the current references produced by other external controllers,

which are summed to the preprogrammed scenario currents. In addition to

that, a so called fast Z control is employed in order to vertically stabilize the

elongated plasma.
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Figure 40: Comparison between simulated (green solid line) and experimental
(blue solid line) plasma centroid radial (left figure) and vertical (right
figure) position for pulse #69449 (courtesy of dr. A. Castaldo).
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Figure 41: Simulated (green solid line) and experimental (blue solid line) plasma
Lower X-point radial (left) and vertical (right) position for pulse #69449

(courtesy of dr. A. Castaldo).
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Figure 42: Simulated (green solid line) and experimental (blue solid line) plasma
Upper X-point radial (left) and vertical (right) position for pulse #69449

(courtesy of dr. A. Castaldo).
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Figure 43: Simulated (green solid line) and experimental (blue solid line) magnetic
measurements BPV 7 (left) and BPV 15 (right) for pulse #69449 (courtesy
of dr. A. Castaldo).
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Figure 44: Simulated (green solid line) and experimental (blue solid line) magnetic
flux for control segment 4 (left) and 6 (right) for pulse #69449 (courtesy
of dr. A. Castaldo).

Position/Shape

PF Coils

Vertical

controller

controllercontroller
Plasma Current

EAST
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Figure 45: Simplified block diagram of the EAST Plasma Control System (PCS).
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6.4.1 Modeling and open loop validation

Since the final aim of the models described in the previous section is the

design of new control algorithms for the EAST plasma, it is necessary to

assess their reliability when performing closed loop simulations. In order

to carry out this task, it is then fundamental to reproduce correctly the

EAST PCS control algorithms. In particular, the two main control logics

adopted at EAST are:

• RZIP: in this operation mode, the controlled quantities are the plasma

current (Ip) and the radial and vertical position of the plasma centroid

(R, Z).

• Isoflux: this operation mode aims at controlling the plasma shape by

regulating to zero the difference between the flux at the null-point and

the flux at some target positions; the fluxes are estimated by means of

a real-time reconstruction code (RT-EFIT [85] or PEFIT [87]). In addi-

tion, the plasma current and the null-point position are controlled to a

desired value; alternatively, instead of controlling the X-point position,

the magnetic field at a given location can be regulated to zero. For DN

plasmas, the position of the 2nd null and the distance at the midplane

between the isoflux surfaces passing through the two nulls (drsep) are

also controlled; however, for the purposes of this discussion, we will

focus on Single Null (SN) plasmas.

Both control logics generate references for the inner PFC current control

loop. Usually, a EAST plasma discharge starts in the RZIP control mode; af-

ter the limiter-divertor transition, the controller switch to the isoflux phase.

During the switching, a convex combination of the references generated by

the two controllers is fed to the internal current control loop, with a tran-

sition time of the order of ~0.1 s. Finally, a vertical stabilizing controller

is needed. At EAST, this controller usually actuates the IC coils in current

driven mode. The architecture of the PCS is shown in Fig. 46.
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Figure 46: Architecture of the EAST PCS (the ’sym’ signals refer to the symmetry
control loop, which controls drsep in DN plasmas). The M matrix is used
to spread the contribution of each control loop among the 12 available
PF circuits. The PF current requests are then tracked by the PFC current
controller.

As it can be seen in fig. 46, most of the controllers employed in the EAST

PCS contain PID regulators. The standard PID available in the EAST PCS li-

brary [130] is equipped with an input low pass filter, i. e.

U(s) =
1

1+ sTp
·
(
Kp +Ki

1

1+ sTi
+Kd

sTd
1+ sTd

)
· E(s) , (89)

where U(s) and E(s) denote the controller output and the input error

respectively.

The parameters for each of the controllers are stored on the EAST PCS

dedicated server, and can be made accessible via MDSplus. Knowing these

parameters, all the controllers can be tested in open loop, feeding in the

experimental errors and comparing the simulated outputs with the experi-
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mental ones. An example is shown in fig. 47 for pulse #74104.
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Figure 47: Plasma centroid position controller output for pulse #74104. The small
discrepancies are due to a sub-sampling of the experimental error sig-
nal.

Each of the controller’s outputs is post-multiplied by a column vector

which distributes opportunely the control action to the PFCs; these vectors

are all collected in a single matrix, called M-matrix in the PCS jargon, as

it can be seen from fig. 46. Each row of the M-matrix corresponds to one

circuit: by summing the plasma current, position and/or shape controllers

outputs weighted by the M-matrix elements and suitable feedforwards, the

current references for the PF Current controller are obtained.

On the other hand, the vertical stabilization loop (called fast Z controller)

is separated from the other ones, and relies on a couple of in-vessel coils,

connected in anti-series. This loop takes as a feedback a linear combination

of magnetic sensors placed along the chamber walls, which is processed by

a high pass filter in the form

Yd(s) =
sTf

1+ sTf
Y(s) (90)
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Usually, the time constant Tf is kept fixed to 0.1 s. In fact, this linear com-

bination is quite different from the vertical position feedback; nevertheless,

the vertical velocity estimation yielded is acceptable (see fig. 48).
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Figure 48: Comparison between the zp feedback (red) and the magnetic probes
combination used by the vertical stabilization controller (pulse #74104).
The upper plot shows the two signals, while the lower one their deriva-
tives obtained by means of a high pass filter of the form (90).

The controller output is the current reference for the IC circuit; when the

fast Z controller is active, the in-vessel coils are usually operated in current-

driven mode, as the power supply takes care of tracking the requested

currents6.

6.4.2 Closed loop simulation

Once the reliability of both the plasma linearized model and the control

system algorithms has been assessed, actual EAST experiments can be re-

produced by means of closed loop simulations. The pulse is simulated

using the experimental control parameters, references and disturbances

6 For the simulations, the IC coils power supplies were treated as ideal actuators when the
in-vessel circuit was in current mode.
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Figure 49: Fast Z controller (including the high pass filter) output for pulse #74104.
The small discrepancies are due to a subsampling of the experimental
feedback signal.

(βp and li). In particular, since the disturbances definition between EFIT

and the CREATE codes is different, some preliminary operations need to

be done. These definitions are

βp,CREATE =
Wp

Wm
(91)

li,CREATE =
4Wm

µ0R0I2p
(92)

βp,EFIT =
4Wp

µ0R̄I2p
(93)

li,EFIT =
4Wm

µ0R̄I2p
(94)

Wp is the average kinetic pressure, Wm is the average magnetic pressure,

R0 is the plasma major radius and R̄ is defined as

R̄ =
2Vp

l2p
, (95)

where Vp is the plasma volume and lp is the plasma perimeter7.

7 R̄ approaches R0 in the large aspect ratio approximation.
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As it can be seen from equations (91)-(94), the value of poloidal beta

adopted by CREATE-L is related to the EFIT definition via the following

relation

βp =
βp,EFIT

li,EFIT
. (96)

The definition of the internal inductance adopted by EFIT, instead, is

different from the one adopted by CREATE-L by a factor of R̄/R0 in (92)-(94).

This factor is related to the shape of the plasma and may change during the

pulse. In the hypothesis that the plasma shape is almost constant during

the flat top phase, a good approximation is given by

łi = li,EFIT · R̄equil/R0,equil , (97)

The equilibrium values R̄equil and R0,equil are a direct output of the equi-

librium code. R̄ and R0 could be estimated online during the simulation;

however, since these disturbances are only used to test the robustness of

the different control architectures, this level of accuracy is not needed.

An example of closed loop simulation for pulse #74104 is shown below

in Figs. 50-55. The simulated traces of the controlled variables (i.e. plasma

current, null point position, current in the in-vessel coils, controlled flux

differences) and the plasma shape at t = 7 , 8 and 9 s are plotted against the

experimental ones.
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Figure 50: Simulated and experimental PFC currents for pulse #74104, obtained
with the existing EAST controller. The experimental signal is shown in
blue, while the simulated one is in red.
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Figure 51: Simulated and experimental in-vessel circuit current for pulse #74104,
obtained with the existing EAST controller. The experimental signal is
shown in blue, while the simulated one is in red.
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Figure 52: Simulated and experimental plasma current for pulse #74104, obtained
with the existing EAST controller. The experimental signal is shown in
blue, while the simulated one is in red. The dashed black line shows the
reference signal.
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with the existing EAST controller. The experimental signal is shown in
blue, while the simulated one is in red. The dashed black line shows the
reference signal.



6.4 plasma control system 131

Time[s]
5 10

S
eg
1[
W

b
/r
ad

]

×10
-3

-5

0

5

10

∆  ψ
1

Time[s]
5 10

S
eg
2[
W

b
/r
ad

]

0

0.005

0.01

∆  ψ
2

Time[s]
5 10

S
eg
3[
W

b
/r
ad

]

×10
-3

-5

0

5

10

∆  ψ
3

Time[s]
5 10

S
eg
4[
W

b
/r
ad

]

0

0.005

0.01

∆  ψ
4

Time[s]
5 10

S
eg
5[
W

b
/r
ad

]

×10
-3

-5

0

5

∆  ψ
5

Time[s]
5 10

S
eg
6[
W

b
/r
ad

]

×10
-3

-5

0

5

∆  ψ
6

Time[s]
5 10

S
eg
8[
W

b
/r
ad

]

×10
-3

-1

0

1

2

∆  ψ
8

Time[s]
5 10

S
eg
9[
W

b
/r
ad

]

×10
-3

-10

-5

0

5

∆  ψ
9

Time[s]
5 10

ψ
B
[W

b
/r
ad

]

0.39

0.4

0.41

0.42

ψB

Figure 54: Simulated and experimental boundary flux and controlled flux differ-
ences for pulse #74104, obtained with the existing EAST controller. The
experimental signal is shown in blue, while the simulated one is in red.
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"From land,

it is necessary to take thought for sailing,

if one is able and has the means,

but when one is upon the sea,

necessity runs to the present."

— Alcaeus of Mytilene

This chapter reports on the experimental activity carried out at EAST

during the 2016-2018 period. Almost every block of EAST’s plasma mag-

netic control system has been redesigned in order to meet the experimen-

tal requirements for advanced magnetic configurations control, according

to the general architecture proposed in chapter 5. Each of sections 7.1-7.4

describes the issues related to one of the controllers and the proposed so-

lutions. The design has been carried out in such a way to have a minimum

impact on the PCS software architecture, so as to require a minimum pro-

gramming effort. Two exceptions to this philosophy are represented by the

VS system and the PFC MIMO decoupling controller, which needed some

dedicated coding (even though they largely rely on functions and routines

which were already available in the existing software).

The proposed approach, which is largely model based, prompts also the

significant advantage of requiring -once all the modeling tools have been

well assessed- a very small number of experiments for parameters tuning.

Indeed, as it was discussed in part II, the controllers can be designed exploit-

ing plasma-circuits numerical models and classical control engineering tech-

niques. Additional experiments, when needed, are mainly devoted to solv-

133
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ing practical implementation problems. The approach previously adopted

at EAST was instead mainly based on a trial and error procedure, requiring

entire experimental sessions dedicated to the tuning of the control parame-

ters.

To conclude this chapter, some further results obtained in simulation

are presented. In particular, sec. 7.5 presents some preliminary results for

the control of poloidal flux expansion in the divertor region. In sec. 7.6,

instead, the possibility of exploiting a Kalman filter approach for the es-

timation of the eddy currents and for plasma boundary identification is

presented.

7.1 vertical stabilization : an iter-like approach

As it was already discussed in sec. 6.1, the final aim of the work pre-

sented in this thesis is to develop a plasma magnetic control system which

is capable of dealing with advanced magnetic configurations. In this view,

decoupling the VS system and the plasma shape and position control be-

comes an essential feature.

Tipically, the decoupling between the VS system and the other controllers

is achieved by means of a frequency separation approach, which allows to

design the plasma current, position and/or shape controllers assuming that

the plasma is vertically stable [131]. This decoupling strategy prompts an

extremely attractive simplification in the design phase of these controllers,

since otherwise the VS system should be explicitly taken into account.

As it will be discussed shortly, the pre-existing EAST VS [127, 129] was not

decoupled from plasma current, position and shape control. For this reason,

as a preliminary step towards the development of a new magnetic control

architecture, the VS algorithm proposed in [132, 133] for the ITER tokamak
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has been adapted to EAST1; the proposed architecture is compliant to the

one described in chapter 5.

7.1.1 Analysis of the fast Z controller

IICref
or VICrefzc

VS system

HPF

Enabled

VS controller
vc

Figure 56: Simplified block diagram of the pre-existing EAST VS system. The con-
troller output can be either a voltage or a current request to the power
supply of the IC circuit, depending on the selected control algorithm.

The pre-existing EAST VS system (fig. 56) takes as input the estimated

plasma vertical position zc, and estimates its time derivative żc = vc by

means of the high pass filter (90)2. The Laplace transform of the estimated

plasma vertical speed is given by

Vc(s) =
sτz

1+ sτz
Zc(s) ,

where the time constant τz is usually set equal to 100 ms. Plasma vertical

position and speed are processed by the VS controller, which can generate

either a current or a voltage request to the IC power supply, depending on

the enabled algorithm. Three different control algorithms are available:

1 To distinguish between the pre-existing controller and the new one, in what follows the
former will be often referred to as fast Z controller, while the latter as ITER-like VS.

2 Actually, as it was already discussed in sec. 6.4.1, the plasma vertical position estimate used
for the VS is not particularly accurate. Nevertheless, the velocity estimate is acceptable. For
simplicity, in the following we will refer to the linear magnetic combination used for the
VS system as zc. When designing the new VS algorithm (see sec. 7.1.2), the same linear
combination of magnetic measurements was used, in order to minimize the impact of the
new design on the PCS.
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(vs1) PID control with IC in current-driven mode: the estimate of the plasma

vertical speed is taken as input by an extended PID3 in the form (89);

the velocity setpoint is zero, so in this case E(s) = −Vc(s). The current

target IICref is tracked by the local controller of the IC power supply.

(vs2) PID control with IC in voltage-driven mode: this algorithm is similar to

(vs1), but the PID output is the voltage request VICref to the IC power

supply.

(vs3) Bang-bang control with IC in voltage-driven mode: both the vertical posi-

tion and speed estimates are used as inputs. In this control mode, a

bang-bang approach is used to drive the IC voltage when the control

error on the position exceeds a given threshold; otherwise, a voltage-

driven PID controller is used [129].

It is worth to remark that, besides controlling the plasma vertical velocity to

zero, all of the VS algorithms listed above can -at least in principle- influence

the plasma vertical position, either directly (as for the bang-bang controller)

or not (e. g. via PID integral action on vc). This, in turn, would imply an

undesired coupling with the plasma position control. On the other hand,

by controlling only the vertical plasma velocity, a stable controller cannot

stabilize the plasma (i. e. the plant is not strongly stabilizable). This issue will

be discussed in more detail in sec. 7.1.2.

From the analysis of the control algorithms (vs1-vs3), it resulted that

they do not guarantee the required decoupling between vertical stabiliza-

tion and plasma shape control.

As an example, let us consider EAST pulse #56603, a SN plasma at Ip ∼=

235 kA. At t = 2.6 s, the current-driven PID (vs1) is enabled, while plasma

3 It is worth to notice that, in the extended PID (89), the integral action is obtained by means
of a low-pass filter, whose time constant τI is usually set to a value that is greater than
the duration of the whole discharge. On the other hand, the value of τp in the VS system’s
PID is usually set to a value corresponding to a cut-off frequency which is greater than the
bandwidth of the VS system itself.



7.1 vertical stabilization : an iter-like approach 137

current and position are controlled by means of the RZIP algorithm (see

sec. 6.4). Exploiting a plasma linearized model produced by means of the

CREATE codes (see sec. 3.3), it is possible to estimate the plasma growth

rate and how the unstable eigenvalue is modified -and eventually stabilized-

by the EAST magnetic control system; linearized models which accept the

IIC current as input can be obtained by means of the procedure described in

sec. 6.3. The estimated growth rate γ at t = 2.6 s (obtained using CREATE-

L) is γ ∼= 574 s−1. As it turns out, by closing only the current-driven PID the

growth rate is slowed down to γ ∼= 6.16 s−1; hence using the (vs1) algorithm

(which is the most used at EAST, as far as the author is aware), the VS sys-

tem alone is not capable to vertically stabilize the plasma. Overall vertical

stabilization can be achieved by closing also the RZIP loop. In this way, the

maximum eigenvalue of the closed loop system is equal to ∼ −1.5× 10−4,
which implies a -rather marginal- closed loop stability. It was also possible

to verify that vertical stabilization is achieved by the joint action of the PID

on the IC circuit and the plasma centroid vertical position loop embedded

in the RZIP controller. With these two controllers alone, the resulting max-

imum eigenvalue in closed loop is ∼ −5× 10−3. Hence, within the existing

architecture of the EAST magnetic control, plasma vertical stabilization is

achieved by the joint action of plasma position and shape controller and

the VS system. As it turns out, the two system are strongly coupled, and

the design of the plasma shape controller cannot be carried out without

explicitly taking into account the VS system4.

As a further example, let us consider EAST pulse #69516 at t = 2.5 s. In

this pulse the enabled VS algorithm was the voltage-driven PID (vs2), with

the same RZIP controller used in pulse #56603. In this case, the open loop

system has a growth rate of γ ∼= 547 s−1. When the voltage-driven PID is

4 In the experiment, the plasma shape control switched from RZIP to isoflux shortly after
a single null configuration had been reached (i. e. at 2.7 s). However, during pulse #56603

the VS system and plasma shape control were strongly coupled even in the isoflux phase.
Indeed, in simulation it was not possible to simply modify the isoflux controller gains
without affecting the overall stability [12].
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closed on the plasma linearized model, two unstable poles appear in ~1.7±
i 1650. For this specific plasma equilibrium, the closed loop system remains

unstable even when the RZIP loop is closed; indeed, the two unstable poles

remain almost unchanged (~1.32± i 1645). They yield an estimated natural

frequency equal to ω ∼= 1645 rad/s. The model-based analysis (carried out

with the CREATE-L linear model) seems to be confirmed by the experiment.

Fig. 57 shows the time evolution of zc. As it was predicted by the model,

once the plasma is sufficiently elongated (i. e. right after t = 2.45 s) an

oscillatory unstable mode appears, with a frequency of ∼ 1256 rad/s. The

difference between the estimated value and the experimental one for the

natural frequency of the unstable mode is significant; however it should be

remarked that, being the closed loop system unstable, the linearized plasma

model around the equilibrium (generated at t = 2.5 s) just gives a rough

estimation of this natural frequency, since during the unstable transient the

plasma may be far from the reference configuration.
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Figure 57: Time evolution of plasma current Ip, plasma centroid position (rc, zc),
and plasma elongation κ during EAST pulse #69516.
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Finally, a brief remark on the bang-bang control algorithm (vs3). In

[129], it is described how this controller, developed in 2015, represents an

improvement with respect to the previous solutions. However, this algo-

rithm aims at controlling directly the vertical position, causing thus -as it

was discussed- a coupling with the shape and position loops. Furthermore,

it has been designed according to a rigid displacement model, and hence it

suffers from the drawbacks described in chapter 4.

7.1.2 Design of the VS system

A simplified block diagram representing the structure of the proposed

VS controller is shown in fig. 58.

VICrefLead
compensator

Ipref

×
+

IIC

vp
Kv

VS system

Plant

Power supply of
the in-vessel circuits

Kic

Magnetic
diagnostic

Plasma and
surrounding
structures

Figure 58: Simplified block diagram of the ITER-like VS deployed at EAST. Only the
plasma vertical velocity vc is fed back; the current flowing in the IC
circuit is also controlled, in order to minimize the Joule losses in the
copper in-vessel coils. The speed gain Kv is multiplied times the target
waveform for the plasma current Ipref .

The voltage request VICref is obtained as ITER-like VS

VICref(s) =
1+ sτ1
1+ sτ2

·
(
Kv · Ipref ·

s

1+ sτz
·Zc(s) +KIC · IIC(s)

)
(98)
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This control law can be obtained straightforwardly from eq. (74) when

FVS(s) is chosen as a lead compensator. The following parameters need

to be chosen:

• Kv: plasma speed gain, scaled by Ipref ;

• KIC: IC current gain;

• τ1 and τ2: time constants of the lead compensator. Such a compen-

sator is needed to adjust the closed loop parameters of the VS system,

in order to obtain the desired values for the stability margins and

the closed loop bandwidth [134]. Note that, in order to have a lead

compensator, it must hold τ1 > τ2.

In order to design the controller, the state-space model (71)-(72) can be

used to derive an input-output relation in the form

Y(s) =

Y1(s)
Y2(s)

 =Wp(s) · ṼIC(s) =

Wp1(s)

Wp2(s)

 · ṼIC(s) , (99)

where ṼIC(s) is the actual voltage applied to the IC circuit by the power

supply, Y1(s) = Zc(s) is the plasma vertical position and Y2(s) = IIC(s) is

the current in the IC circuit (all the quantities are expressed in the Laplace

domain). The transfer matrix (99) models the behavior of the plasma and

of the surrounding conductive structures. In addition, when designing the

VS system, models of both the power supply and the relevant magnetic

diagnostic should be taken into account; indeed, these two components

usually have a major impact on the performance of the closed loop system.

The power supply of the IC circuit has been modelled as a first order filter

with a delay, i. e.

ṼIC(s) =
e−δpss

1+ sτps
· VICref(s) , (100)
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whose parameters can be estimated from dry-run pulses; the obtained val-

ues are τps = 100 µs and δps = 550 µs. On the other hand, the same

reconstruction method adopted by the PCS -i. e. a linear combination of sim-

ulated magnetic diagnostics- has been implemented to build the feedback

signal to the VS system (see also sec. 6.4.1); simulated magnetic diagnostic

measurements can be obtained as outputs of the CREATE linearized mod-

els, as described in 3.3. Furthermore, to estimate the vertical speed of the

plasma, a derivative filter has been applied on the measured vertical posi-

tion of the centroid Zc(s), i. e.

Vc(s) =
s

1+ sτv
·Zc(s) , (101)

whose time constant has been set equal to τv = 1 ms. The plant model

results from the series of (99)-(101), and is equal to

Wplant(s) =

 Wp,1(s)

s
1+sτv

Wp,2(s)

 · e−δpss
1+ sτps

. (102)

The reader may have noticed from fig. 58 that, counterintuitively, to achieve

plasma stabilization the controller must be closed in positive feedback on

the plant. This can be justified as follows. In order to make the use of a

root locus design approach possible for (98), the 550 µs time delay of the IC

power supply has been replaced by its third order Padé approximation [106,

Section 4.1.6], that is

e−δpss ∼=
−(s− 8444)(s2 − 1.34 · 104s+ 8.54 · 107)
(s+ 8444)(s2 + 1.34 · 104s+ 8.54 · 107) . (103)

With this approximation, and by exploiting the Paring Interlacing Property

(PIP) [135]:

Theorem: A linear plant W(s) is strongly stabilizable if and only if the
number of poles of W(s) between any pair of real zeros in the right-half-
plane is even. �
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closed.
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(b) Root locus of the VIC − Vc chan-
nel, when both the loops pro-
vided in (98) are closed.

Figure 59: Root locus of the VIC − Vc channel when the controller (98) is used
and the plasma model for the EAST pulse #60938 at t = 6 s is con-
sidered. The root locus diagrams have been obtained considering a re-
duced model of order 10 for the plant (102) (see [136, Ch. 7]) (courtesy
of prof. G. De Tommasi).

it can be shown that, given the plant model (102), it is not possible to sta-

bilize the plasma by feeding back only the vertical speed Vc. Indeed, given

the two positive zeros introduced by the delay of the power supply (103),

for the PIP an additional pole in the Right Half Plane (RHP) is required in

the open loop transfer function of the VIC − Vc channel; without it, there

is no way to move the plasma’s unstable pole to the Left Half Plane (LHP)

using a stable controller. The additional pole can be placed in the RHP by

closing a positive feedback on Zc (i. e. using an integral action on Vc) on IIC.

However, the first solution would be equivalent to feeding back also the

vertical position Zc, which is what we decided to avoid in the first place;

for this reason, the (positive) feedback term on IIC has been added in (98).

By closing the loop on IIC another unstable pole is added in the VIC − Vc

channel, as it is shown in fig. 59a. At this point, the closed loop system can

be stabilized by a proportional loop on Vc, as shown in fig. 59b (the sign of

the Kv gain depends on the relation between IIC and Zc).
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7.1.3 Robustness analysis

The CREATE-L plasma linearized models have been also exploited in

order to assess the robustness of the proposed approach, which can be

evaluated by using the Nichols chart [134] of the SISO transfer function

obtained by opening the control loop in correspondence with the VS system

output.

In [7], the proposed controller was tested against different plasma con-

figurations in order to assess its robustness. Here we report the results

obtained for four different equilibria (see table 1 and fig. 63a), using the VS

parameters (see sec. 7.1.4)

Kv = 2.15 · 10−4 , KIC = 5.3 · 10−2 , τ1 = 1.7 ms , τ2 = 0.01 ms , (104)

Fig. 63a shows the corresponding plasma cross sections. This initial analy-

sis, which led to the charts shown in fig. 60, was performed by considering

a pure delay model for the power supply of the IC circuit with δPS = 550 µs.

As it can be seen from the graphs, the proposed ITER-like VS is able to

provide plasma stabilization for all the four different configurations consid-

ered. In three cases out of four, the phase margin is greater than 40 degrees,

and also the upper and lower gain margins guarantee robustness against

either a doubling or a halving of the open loop gain. However, the mar-

gins significantly worsen for the equilibrium #64204 at t = 3.5 s (which is a

Lower Single Null (LSN) plasma and has the highest growth rate among the

ones listed in table 1). In fact, when the full power supply model (100) is

considered, the closed loop system for this equilibrium becomes unstable.

To provide the desired robustness with respect to this configuration, the

controller parameters can be modified ad hoc. As an example of this, fig. 61

compares the Nichols diagram obtained with the VS parameters (104) for
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pulse #64204 with the one obtained for the same plasma equilibrium using

the following set of parameters

Kv = 2.0 · 10−4 , KIC = 4.5 · 10−2 , τ1 = 1.0 ms , τ2 = 0.01 ms . (105)

However, in the 2016-2018 experimental campaigns, Upper Single Null

(USN) and DN plasmas were generally preferred to LSNs, mainly due to

technical reasons related to the lower divertor. For this reason, the set of

parameters (104) has also been tested against several plasma equilibria ob-

tained starting from 2016-2018 experiments (see table 2 and fig. 63b), show-

ing good performances; the results are reported in fig. 62.

Finally, a multiobjective optimization procedure was also set up to find

a set of parameters capable of optimizing the stability margins of the VS

system with respect to a set of different plasma configurations. For the sake

of brevity, it will not be discussed here in detail; interested readers are

referred to [8]. A more general solution may include an adaptive algorithm

capable of adjusting the VS gains according to the experiment.

Table 1: Main plasma parameters for the four equilibria considered in fig. 60, i. e.
the ones proposed in [7, 8]. The values reported for the growth rate γ,
the elongation κ, the poloidal beta βp, and the internal inductance li have
been computed with the CREATE-NL equilibrium code.

Reference pulse Configuration Ipeq [kA] γ [s−1] κ βp li

46530 at t = 3 s Double-null 281 137 1.66 0.30 1.27

52444 at t = 3 s Limiter 230 92 1.35 0.26 1.34

60938 at t = 6 s Upper single-null 374 194 1.77 0.78 0.95

64204 at t = 3.5 s Lower single-null 233 512 1.61 0.02 2.19

7.1.4 Experimental results

In this section, some experimental results are presented and discussed.



7.1 vertical stabilization : an iter-like approach 145

360 405 450 495 540 585 630

-15

-10

-5

0

5

10  3 dB

 6 dB

#46530@3s

#52444@3s

#64204@3.5s

#60938@6s

Nichols Chart

Open-Loop Phase (deg)

O
p

e
n
-L

o
o
p

 G
a

in
 (

d
B

)

(a) Nichols diagrams of the open loop
transfer function at the output of the
VS system shown in fig. 58 for the equi-
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Figure 60: Robustness analysis for the VS system.
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Figure 61: Nichols diagrams for the equilibrium #64204 at t = 3.5 s. The blue trace
is the diagram obtained with the parameters in (104), while the red trace
is the diagram for the parameters specified in (105).

The first presented experiment aims at proving that the control algo-

rithm (98) is capable alone to vertically stabilize the plasma column, as

predicted by the model-based analysis presented in sec 7.1.2. In this view,

during pulse #70799, the ITER-like VS was enabled from 2.1 s to 3.3 s. During
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Table 2: Main plasma parameters for the three equilibria considered in fig. 62.
The values reported for the growth rate γ, the elongation κ, the poloidal
beta βp, and the internal inductance li have been computed with the
CREATE-NL equilibrium code.

Reference pulse Configuration Ipeq [kA] γ [s−1] κ βp li

74104 at t = 1.7 s Limiter 249 97 1.34 0.44 1.15

77472 at t = 2.65 s Upper single-null 299 273 1.69 0.28 1.20

79295 at t = 3 s Upper single-null 299 178 1.65 0.69 1.36
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Figure 62: Robustness analysis for the VS system.

the same time window, only Ip and rc were controlled in closed loop using

the RZIP algorithm, while zc was purposely left uncontrolled.

The experimental result for this pulse are shown in fig. 64, where the

time traces for Ip, rc, zc, VICref , and IIC are reported. After an initial tran-

sient, zc does not exhibit any exponential drift, meaning that stabilization

is achieved without directly controlling the position. Moreover, the current

in the control circuit is kept small.
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Figure 63: Plasma poloidal cross section for the plasma equilibria in tables 1-2.

During a second experiment, pulse #70799 was repeated, and the con-

troller parameters of the VS were finely tuned to reduce the amplitude of

the oscillations on both zc and IIC. The new set of parameters was set equal

to (104) (i. e. to the values used to draw most of the conclusions of this

section), and was tested during the EAST pulse #71423. A comparison be-

tween pulses #70799 and #71423 is shown in fig. 65; as in pulse #70799,

the ITER-like VS was enabled from 2.1 s to 3.3 s. In fig. 65, a bump on

the plasma current trace can be seen in pulse #74123; this bump was in-

duced by the transition between the two different controllers, which was

implemented without a proper bumpless transfer strategy. Nevertheless,

the overall closed loop behavior exhibit less oscillations and succeeds in

recovering from the unexpected disturbance.

In a third experiment, the vertical position loop of the RZIP controller

was redesigned (since, with the new VS, it was not needed to achieve verti-
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Figure 64: EAST pulse #70799. During this pulse the new VS system was enabled
for 1.2 s starting from t = 2.1 s. In this time window only the plasma
current Ip and the radial position of the centroid rc were controlled in
closed loop, while zc was not controlled (indeed, for zc the dashed black
reference is not tracked).

cal stabilization anymore) and the vertical position of the plasma centroid

was controlled in feedback. Fig. 67 shows the experimental results obtained

during pulse #70131, where the VS was enabled from t = 2.1 s until the end

of the pulse, and the controller parameters were set equal to (104). It can be

seen that, regardless the disturbance due to the plasma current bump, the

zc reference is tracked by the controller.
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Figure 65: Tuning of the VS controller. This figure shows a comparison between
EAST pulses #70799 and #71423. The control parameters in (98) used for
the pulse #71423 were tuned exploiting the CREATE linear model, with
the aim of reducing the amplitude of the oscillations on both zc and IIC.

Finally, during pulse #77472, due to wrong PCS settings all the con-

trollers were unintentionally switched off, with the exception of the VS sys-

tem and of the plasma current controller. The pulse lasted up to 7.3 s, prov-

ing again the capability of the new VS to independently guarantee plasma

vertical stability.
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Figure 66: EAST pulse #70131. During this pulse the vertical position of the plasma
centroid zc was also controlled.
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7.2 poloidal field coils decoupling controller

In the proposed architecture, the outputs of the plasma current, posi-

tion and shape controllers are used to adjust the current requests to the

PFCs. The inner PFC currents control loop is in charge of tracking these

requests, by generating proper voltage requests to be sent to the power

supplies. In fact, the pre-existing PFC currents controller of EAST was able

of guaranteeing quite good performances; however, also this block was re-

designed, since the proposed approach for the shape controller relies on

the assumption that the PFC currents all have (almost) the same dynamic

response, as it will be discussed in sec. 5.55. Furthermore, the design of a

new control algorithm for the PFC current controller provided a good way

to further validate the reliability of the exploited electromagnetic models.

The new PFC current controller was designed according to the criteria

discussed in sec. 5.2. In particular, it has the form (81); however, most of the

experiments have been conducted with a controller equivalent to (79).

7.2.1 Analysis and simulations

The simulated response to a 1 kA step on PF1 for a purely proportional

controller (77) with τi = 45 ms for all the circuits is shown in fig. 68.

Furthermore, in order to test the effectiveness of the decoupling in the

presence of plasma, the proposed controller has been tested in closed loop

with a linearized model obtained from pulse (USN) #78289 at t = 3 s. In

fig 69 the Bode diagrams for both the diagonal and off-diagonal channels

are reported, showing how the PFC exhibit almost the same dynamics and

the coupling effects are suppressed by the controller.

5 As for the VS, a frequency separation approach is adopted also for the PFC current con-
troller, whose response should be faster than that of the plasma current, position and
shape control loops.
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As it was discussed at the end of sec. 5.2.1, the feedforward compen-

sation term R̃PFIPF(t) allows to treat the behaviour of any coil as that of a

superconductor. Even for truly superconducting coils, a residual resistivity

could still be present, i. e. due to the connections to the power supplies. In

the case of EAST, the superconductivity assumption seems to be well ver-

ified, and thus we chose to put R̃PF = OnPF×nPF in the last experimental

campaign (O represent the zero matrix).

Furthermore, although it might look as an oversimplification, the ap-

proximation of the PFC behaviour with that of pure integrators (see again

sec. 5.2.1, eq. (78)) is very well verified experimentally, as it can be seen

from figs. 70-71 (sec. 7.2.2).
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Figure 68: Simulation showing a comparison between the PFC-MIMO decoupling
controller (77) with τi = 45 ms for all the PF circuits and EAST’s SISO PID
controllers when a 1 kA request is applied to PF1. It can be seen how
the proposed controller is able to reduce the effect of the variation of
IPF1 on the other coils.
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Figure 69: Bode diagrams of the closed loop system obtained with the PFC-MIMO
decoupling controller (77) with τi = 45 ms for the equilibrium #78289 at
t = 3 s. On the left the diagonal channels, which show the response of
the PF circuits to a reference applied to the same circuit; on the right, the
response of the PFC to a reference applied on a different coil. Although
the inductance matrix in (76) is modified by the presence of the plasma,
the decoupling remains effective.

7.2.2 Experimental results

In this section, some experimental results are presented. The controller

performances were assessed during a series of plasmaless pulses. The re-

sults obtained with the purely proportional controller presented in sec. 5.2.1

are shown in fig. 70. For this experiment, a value of τi = 45 ms was chosen

for all the PF circuits.

In fig. 71, the results obtained with a PI controller (79) are shown. The

controller parameters are Kp = 40, Ki = 4000, Kd = 0, τP = − (i. e. not

used), τI = 10 s, τD = −. These parameters were chosen in order to assign

a desired settling time and damping factor to the closed loop system.
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Simulated results are also presented along with the experimental ones.

Their agreement with the experiments is satisfactory, proving the reliability

of the modeling tools. For comparison, in the figures, the results obtained

when the dynamics of the PFCs are approximated by pure integrators are

also shown.

Finally, figs. 72-75 show a comparison between the proposed MIMO de-

coupling controller and the previous SISO one.
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Figure 70: Comparison between simulated and experimental response to a trape-
zoidal reference signal for EAST plasmaless pulse #74107. Controller (77)
was used with τi = 45 ms for all the PF circuits. The dashed blue line
represents the simulated output when the control loop is closed on a
pure integrator. The dynamics show a good agreement with the experi-
ment, while the small steady state error is due to an imperfect compen-
sation of the coils resistances.

7.3 design of an alternative rzip control

Once the alternative approach to VS described in sec. 5.1 was successfully

commissioned, it was possible to tune the plasma centroid position control

system. Indeed, the parameters of the PIDs used to control both the horizon-

tal (rc) and vertical (zc) position of the plasma centroid were optimized in

order to provide good performance when coupled to the new VS. This ac-

tivity was carried out before the implementation of the MIMO PFC controller

described in sec. 5.2.
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Figure 71: Comparison between simulated and experimental response to a trape-
zoidal reference signal for EAST plasmaless pulse #80619. Controller (79)
was used withPID parmeters Kp = 40, Ki = 4000, Kd = 0, τP = − (i. e.
low pass filter not used), τI = 10 s, τD = −. The steady-state error
is compensated by the integral action; however, the presence of a zero
in the controller’s transfer function causes a small overshoot in the re-
sponse. The dashed blue lines represents the simulated current when
the control loop is closed on a pure integrator.
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Figure 72: Comparison between PF1 measured currents during EAST plasmaless
pulses #74016 (SISO PID) and #80619 (MIMO PI).

By exploiting the linear model (71)-(72), and by explicitly taking into

account both the VS and the SISO PFC controller, a MIMO closed loop system

from the current requests to the plasma centroid position was obtained. By

taking into account also the M-matrix of the (rc, zc) controller, two SISO

transfer functions were obtained, one for each of the two coordinates. In

fact, the M-matrix that was customarily used at EAST for the control of the

plasma centroid position turned out to be capable of providing a good



156 magnetic control at the east tokamak

Time [s]

1 2 3 4 5 6

[V
]

-50

0

50

100

V
PF1

SISO PID - #74016

MIMO PI - #80619

Figure 73: Comparison between PF1 voltage requests during EAST plasmaless
pulses #74016 (SISO PID) and #80619 (MIMO PI). The control actions are
comparable.

decoupling of the two controlled variables, and thus it was not modified6.

At this point, the controller parameters could be tuned on the obtained

transfer functions, and then tested in closed-loop simulations to assess the

controller performances.

With the introduction of the PFC MIMO controller, the design of the cen-

troid position controller became much easier. Indeed, after the PFC current

controller was succesfully implemented and tested, a new RZIP control was

also designed on the basis of a simplified model (see end of sec. 5.2.1). Ex-

perimental tests of this new controller are expected by the end of 2018.

A brief remark on the plasma current control to conclude this section.

One of the main issues encountered in the early phases of this work was

the lack of a proper bumpless transfer strategy when passing from RZIP to

isoflux control. In fact, RZIP and isoflux are defined as two separate control

phases in the PCS software, which means that the isoflux controller starts

processing the control error only after the switch; thus, at the switching

instant, all the integrators in the PID controllers were unloaded. In partcu-

lar, this was true of the Ip controller, which initially was embedded in the

RZIP/isoflux one. When switching from one to another, the integral action

6 It is worth to remark that the PFC system of EAST is up-down symmetric (see sec. 5.4).
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Figure 74: Comparison between PF1-12 measured currents during EAST plasmaless
pulses #74016 (SISO PID) and #80619 (MIMO PI).

of the plasma current control loop was reset, yielding considerable bump

which had a catastrophic effect on the overall control architecture perfor-

mance (this also happened at the transition from one RZIP controller to

another; see, for example, fig. 67). Actually, the transition from RZIP to
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Figure 75: Comparison between PF1-12 voltage requests during EAST plasmaless
pulses #74016 (SISO PID) and #80619 (MIMO PI). The control actions are
comparable.

isoflux took place over a finite time interval [ti, tf] (whose length is usually

set to 0.05 to 0.1 s), i. e. as

u(t) =
t− ti
tf − ti

uisoflux(t) +
tf − t

tf − ti
uRZIP(t)
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However, this device was not enough to solve the issue. The problem has

been partially solved by defining a separated control category for the Ip

controller which is active during all the discharge in parallel to the posi-

tion/shape control; in this way, the reset of the integral action of the Ip con-

troller after the switch was avoided. A further improvement was achieved

after the introduction of PEFIT, since the isoflux error was also made to

go smoothly from zero to the actual value at the beginning of the isoflux

phase. Nevertheless, the lack of a bumpless transfer procedure and of an

anti-windup logic for the PIDs has been of the main obstacles to the com-

pletion of this work.

7.3.1 Experimental results

In this section some experimental results are reported.

Fig. 76 shows the results obtained in pulse #70800, where a model-based

RZIP controller was active from 2.14 s to 3.3 s, together with the ITER-like

VS presented in sec. 5.1. A bump on the plasma current due to the transition

to the new RZIP controller can be seen in the first plot.

Similar considerations hold for pulse #70131. The results were shown in

fig. 67 (sec. 7.1.4).

7.4 a mimo architecture for plasma shape control

As it was discussed at the beginning of this chapter, the main aim of

the experimental activity carried out at EAST was that of developing an

efficient strategy for plasma shape control. This issue was faced with a

shape controller design similar to the one proposed in sec. 5.5.

The previously existing control approach is discussed in sec. 7.4.1.

Sec. 7.4.2 briefly describes the proposed MIMO decoupling algorithm. Fi-

nally, sec. 7.4.3 reports on some experimental results.
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Figure 76: Time traces for the EAST pulse #70800, during which both the new VS
and the model-based centroid position control were enabled from t =
2.1 s to t = 3.3 s.

7.4.1 Isoflux control at EAST

As it was discussed in chapter 4, one of the tasks that must be accom-

plished by plasma magnetic control consists in controlling the shape of the

plasma boundary, which can be identified with the LCFS. This is usually

done in two ways:

• Isoflux control: a finite set of points is chosen along the desired plasma

boundary. The value of the poloidal flux in these points is controlled

the one estimated at the desired X-point/limiter point location. Equiv-

alently, the difference between the poloidal flux at these points and
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at the null/limiter point can be regulated to zero. In addition, the

X-point/limiter point position is also controlled, either by closing a

loop directly on the radial and vertical coordinates or by controlling

the poloidal field in that point to zero. Multiple X-points can be con-

trolled, e. g. for magnetic configurations such as double-null plasmas;

• Gap control: the distance between the LCFS and the first wall along a

given set of straight segments is controlled to a desired value.

The shape control problem at EAST is usually tackled with an isoflux ap-

proach (even though a gap controller was under development during the

experimental campaign of summer 2018). During a pulse, up to 13 flux

differences between a set of given boundary points and the X-point can be

controlled by the PCS, but in general only 7-8 of them are actually controlled.

The controlled boundary points are placed at the intersection of the desired

boundary with a set of control segments, defined in the PCS; for this reason,

in what follows we will refer to them as control points or control segments

equivalently.

It is worth to remark that, since the poloidal flux at the control points

cannot be directly measured, a real-time reconstruction code is needed. The

codes used at EAST are RT-EFIT [85] and, more recently, the more accurate

PEFIT [87]7; in particular, PEFIT is a parallelized version of EFIT which re-

lies on the CUDA architecture, allowing to solve the Grad-Shafranov equa-

tion over a much finer grid (129×129 points with respect to the 33×33 of

RT-EFIT). From the point of view of the magnetic control system, the out-

puts of RT-EFIT are the desired flux differences and the X-point(s) position,

while PEFIT also provides the magnetic field at the null-point target po-

sition8. Furthermore, after the introduction of PEFIT, a smooth transition

procedure was also implemented, which gradually brings the errors seen

from the shape controller from zero to their actual value (usually with a

7 The offline version of EFIT [121] is used instead for post-discharge analyses.
8 Controlling to zero the two components of the magnetic field at a desired location is

equivalent to controlling the position of a null point.
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Figure 77: Control segments for a USN configuration (pulse #78289). The control
points are indicated by the blue squares. The figure shows only the
segments that are actually controlled by the PCS.

transition time of ~0.3 s). This device solved some of the bumpy transfer is-

sues that were common when the controller switched from RZIP to isoflux

in the previous experiments.

The controller consists of a set of PIDs; one (or sometimes two) PFCs are

used to control each segment or X-point coordinate/poloidal field compo-

nent, in a SISO (or SIMO) fashion.

7.4.2 MIMO Isoflux control

To enhance the performances of EAST’s shape controller, a MIMO control

algorithm was designed and deployed, following the approach described
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in sec. 5.5. In order to avoid large control actions, a truncated SVD can be

considered by neglecting the singular values which are lower than a given

treshold (see also sec. 5.5). In fig. 78 CC̃† is reported when the three lowest

singular values are removed.
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Figure 78: Matrix multiplication C C̃† when 3 singular values are removed.

The shape controller has been designed with an isoflux approach (see

chapter 4). Furthermore, when all the regulators have the same transfer

function (see sec. 5.5) the controller structure is the same used by the EAST

PCS, i. e. a set of PIDs followed by a matrix which distributes the control

actions to the PF coils. Hence, the controller can be implemented without

additional programming; the only differences are that now the M-matrix9

is not sparse anymore, and the PID controllers need to be equal on all the

control channels.

7.4.3 Experimental results

Figs. 79-80 show a comparison between the previous SISO shape con-

troller (pulse #78140) and the proposed MIMO shape control (pulse #79289).

Both pulses are ohmic USN discharges at Ip = 250 kA. During pulse #78140

9 See fig. 46.
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the X-point position was directly controlled, while during pulse #78140 the

null point position control was achieved by regulating to zero the poloidal

field at the target location. During the proposed experiment, the PFC MIMO

controller commissioning was not complete, and thus the SISO PID controller

was used to track the PF currents. However, the argument discussed above

still holds partially if we assume that the internal PFC current control loop is

fast enough with respect to the shape controller, i. e. δIPF ∼= δIPFref . The only

difference is that a simple tuning of the controller parameters as described

in sec. 7.4.2 in principle is not possible, and thus it must be carried out

experimentally or taking into account more detailed models of the inner

control loop behavior.

Experiments which make use of the new PFC current controller are ex-

pected by the end of 2018.

7.5 control of alternative divertor configurations

As it was discussed in 6.1, the final aim of the proposed magnetic con-

trol architecture is to provide a sound and flexible framework for the feed-

back control of alternative divertor magnetic configurations. Some prelimi-

nary results are presented in this section.

One possibility to achieve this goal is to directly control the magnetic

configuration of the plasma in order to increase the flux expansion in the

divertor region. In order to get a simple physical picture, let us consider

two flux surfaces separated by a given flux difference δψ. We can imagine

the Scrape-Off Layer (SOL) region between these two magnetic surfaces as

a flux tube, in which the particles are forced to flow due to the magnetic

confinement. If the section of this flux tube increases, the hot gas which

flows towards the divertor expands; as a consequence, it cools down and

deposits the heat flux over a wider divertor area. One possibility to increase

the distance between two flux surfaces is to directly shape the poloidal cross

section of the isoflux surfaces in the region of interest by controlling a set
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Figure 79: Comparison between the SISO and MIMO shape controllers (pulses
#78140 and #79289). The new decoupling strategy provides a dramatic
improvement of the controller performances. The dashed black line in
the last two plots represents the X-point position reference.

of flux differences to a desired value (which, in this case, may be different
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Figure 80: Comparison between the SISO and MIMO shape controllers (pulses
#78140 and #79289). The LCFS at t = 4.5 s is shown together with the
control points and the target X-point position.

from zero). As an example, consider fig. 81. A possible set of flux differences

is given by

χ1 = ψ
′
O −ψO , (106a)

χ2 = ψ
′
P −ψP , (106b)

χ3 = ψ
′
Q −ψQ . (106c)
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The new flux differences can be easily included among the controlled out-

puts exploiting an SVD-based procedure similar to the one described in

sec. 7.4.2.

Figure 81: Reference scenario for the control of the flux expansion using isoflux
control. The plasma shape controller should be able of regulating the
flux differences χ1 = ψ ′

O −ψO , χ2 = ψ ′
P −ψP and χ3 = ψ ′

Q −ψQ, to a
given value while controlling simultaneously the overall shape.

In what follows, a simple simulation example will be presented. Start-

ing from the plasma configuration of pulse #78290 (fig. 82) -an USN dis-

charge where the MIMO shape controller proposed in 5.5 was used- an ad-

ditional control point has been placed in the surroundings of the X-point,

as it is shown in fig. 83. This control point was chosen at the same vertical

coordinate of the equilibrium X-point, but in a position corresponding to

the 99% of the equilibrium boundary flux (the corresponding isoflux line is

shown in red in fig. 83). Let us call this new control point P. The flux dif-

ference δψP = ψX −ψP obtained from the equilibrium has been used as a

constant non-zero reference for the isoflux controller on the channel relative

to δψP; this choice is justified by the fact that the poloidal flux generally ex-

hibits a linear behaviour during a plasma discharge. To achieve the desired

flux expansion, the new control point has been moved radially outward of

3 cm between t = 4 s and t = 5 s. The simulation has been performed using

the experimental feedforwards and reference signals (except for the new
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control point), but including the new MIMO PFC controller 79 (in the experi-

ment, the SISO PFC current control was used). The plasma current controller

was also, since the old one was not compatible with the new PFC current

controller. The experimental values of βp and li were also considered in

the simulation, in order to test the robustness of the controller with respect

to the action of the disturbances. The results are shown in figs. 84-88; the

experimental values of the experiment -i. e. without the additional control

point- are also shown in blue for comparison. 10.

R[m]
1 1.5 2 2.5 3

Z
[m

]

-1.5

-1

-0.5

0

0.5

1

1.5

1

2

3

4

5

6

8

9

Pulse #78290 at 3s

Figure 82: Plasma equilibrium for EAST USN pulse #78290 at t = 3 s. The control
segments used in the experiment and the target boundary points are
also shown.

10 A procedure similar to the one proposed in this section was presented in [12]. Another
possibility is to control the position of a secondary null-point, in order to bring the
plasma configuration closer to a snowflake one; this kind of configurations is called Quasi-
SnowFlake (QSF). Feedback control of QSF configurations is one of the goals to be achieved
in the next experimental campaigns. However, the procedure is -at least in principle- equiv-
alent to the one proposed here, since the X-point can be controller in the same way, i. e. by
adding it to the output vector in the SVD procedure described in 7.4.2
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Figure 83: Additional control point added; the equilibrium has been obtained from
pulse #78290 at t = 3 s. The green and red lines represent the LCFS and
an isoflux line corresponding to the 99% of the boundary flux value.
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Figure 84: Requested PFC currents.

7.6 eddy current estimation and shape reconstruction via

kalman filtering

To conclude this chapter, a possible procedure for the estimation of the

eddy currents flowing in the passive structures surrounding the plasma
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Figure 86: Poloidal field at the X-point reference position.

will be presented. This approach is based on the well known Kalman filter

optimal observer, and has the advantage of allowing a fast identification of

the plasma boundary.

7.6.1 Introduction

A fast and reliable algorithm for the reconstruction of the poloidal flux

map is a crucial issue for plasma magnetic control, as it was discussed in

sec. 7.4.1. Most of the strategies adopted to face this problem entail a real-

time solver of the Grad-Shafranov equation. Due too the non-linearity of
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Figure 87: Errors on the controlled flux differences. It can be seen how, adding
a new controlled variable, the overall performances worsen. The new
controlled flux difference was added on segment #13 (which was not
controlled in the experiment). The imposed reference for this new vari-
able is ~4 · 10−3 Wb/rad.

this equation11, the solution is usually obtained by means of iterative meth-

ods, which can become slow depending on the desired accuracy and the

difference between the initial guess and the actual plasma shape. For these

reasons, a number of real-time versions of the main reconstruction codes

have been realized, which exploit different methods in order to make the

reconstruction fast enough. Some examples are RT-EFIT [85], PEFIT [87]

and LIUQE [86]. In practice, all of these algorithm only perform one it-

eration, starting from the solution computed at the previous time instant.

Ostensibly, this approach can fail when very fast changes in the plasma

are considered. Furthermore, since the eddy currents induced in the pas-

11 See chapter 3 for a detailed discussion of the Grad-Shafranov equation and of the issues
related to its solution.
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Figure 88: Plasma shape in the divertor region and at the midplane at t = 4, 4.5,
and 5 s (black, blue and green lines respectively). It can be seen how
the flux surfaces expand in the divertor region, while they are almost
unchanged at the midplane. The isoflux lines are not very close to the
control points, despite the small (~10−4Wb/rad) error (see fig. 87). This
is due to the fact that the flux gradient is small near the X-point. The
boundaries obtained with EFIT for the experiment (pulse #78290) are
also shown for comparison.

sive structures are not directly measurable, these codes often neglect them

when solving the Grad-Shafranov equation, renouncing to some significant

information. However, this issue has already been addressed at the DIII-D

tokamak, where Kalman filtering theory has been used in order to estimate

the eddy currents and include them in the real-time equilibrium reconstruc-

tion performed by the EFIT code [137].

A possible extension to this approach is proposed here. As it was dis-

cussed in sec. 3.3 accurate linearized models for the plasma-circuits inter-

action can be obtained exploiting the CREATE equilibrium codes [1], [96].

These models can be used as the starting point for a state observer design,

which allows to estimate the currents induced in the passive structures.
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Furthermore, the output equations (72) yields a static relation between the

currents (including plasma) and the flux map. By placing a grid of virtual

flux probes over the vacuum chamber, this approach brings along a fast

and accurate reconstruction of the plasma shape, which can be exploited

for magnetic control purposes.

Possible extensions to the preliminary approach proposed here can be

considered. To achieve better performances in a real-time implementation,

the matrices of the linearized model used by the filter could be updated

during the pulse (e.g. by considering different snapshots of the plasma sce-

nario and scheduling the matrices to be used according to the respective

linearized models). Furthermore, an extended Kalman filter could be used

to take into account some nonlinear effects. Finally, the effect of βp and li
variations have been neglected here; an estimate of these quantities could

be used to further increase the amount of information available to the ob-

server.

7.6.2 Recursive Kalman filter

The Kalman filter [138] is an algorithm which is used to estimate the state

of a dynamical system starting from known inputs to the system and out-

put measurements affected by uncertainty. The filter provides an efficient

state estimation for systems with modeling uncertainties and measurement

noise, and is proved to be optimal when the model perfectly matches the

actual system, the entering noise is white and gaussian and the covariance

matrices of the noise are known. At every step, the filter combines the previ-

ous estimate of the state with the inputs/outputs to the system in order to

give a best guess of its internal state: indeed, the filter works in a recursive

fashion. The structure is similar to that of the classical Luenberger Observer,

but the observer gain is chosen on the basis of the noise covariance matrices

(i.e., the filter "trusts more" the measurements which are affected by a lower

uncertainty).
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Given a linear dynamical system in the form:

ẋ(k+ 1) = Ax(k) +Bu(k) + vx(k) (107)

y(k) = Cx(k) + vy(k) (108)

with vx(k) and vy(k) gaussian, uncorrelated and with zero average, and

Q = var [vx] R = var [vy] N = var [vx, vy]

it can be demonstrated that the optimal bayesian linear estimator of the

state variables is given by

L(k) = P(k|k− 1)CT
[
CP(k|k− 1)CT + R

]−
1 (109)

x̂(k|k) = x̂(k|k− 1) + L(k) [y(k) −Cx̂(k|k− 1)] (110)

P(k|k) = [I− L(k)C]P(k|k− 1) (111)

x̂(k+ 1|k) = Ax̂(k|k) +Bu(k+ 1) (112)

P(k+ 1|k) = AP(k|k)AT +BQBT (113)

Equation (109) gives the expression for the Kalman filter gain at the time

instant k. Equations (110) and (111), instead, represent the measurement up-

date phase, where the new estimate of the state variables is generated. Fi-

nally, equations (112) and (113) constitute the time update phase, during

which the prediction of the state variables and the error covariance matrix P

are projected one time step forward (from k to k+ 1).

It is important to remark that a tokamak plasma is far from being a lin-

ear system. Nevertheless, in the neighborhood of a given equilibrium, the

plasma behavior can be well approximated by a linearized model in the

form (70).
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7.6.3 Application to the EAST tokamak

To test the proposed algorithm, a collection of 10 EAST quasi-snowflake USN

pulses has been used [139]. The reference numbers of these experiments are

7130, 71308, 71309, 71372, 71375, 71379, 71380, 71381, 71382, 71464. A single

linearized model was generated using the data related to pulse 71307 at

4 s and then used for all the other pulses, in order to verify that the same

model provides a good response even for different plasma discharges. In

this way, in a realistic control-room situation, the linearized model obtained

using data from the designed scenario (or from a similar discharge done

before) should work also for a new experiment, provided that the controller

succeeds in keeping the plasma parameters near to the desired values.

On the EAST tokamak, 43 field measurements and 35 poloidal flux

probes are available. Of these, the ones used for the simulation are shown

in Fig. 89 (some of the field sensors were removed because their measure-

ments were judged unreliable).

The inputs to the filter were the output vector (magnetic probes and

plasma current) and the measured PFC and IC currents. The PFC and In-

Vessel circuits can be treated as if they were current-driven by the proce-

dure described in sec. 6.3. Actually, the plasma current can be treated both

as an input current or as a measured output; both strategies proved to be

effective. The covariance matrices R, Q were estimated starting from the

experimental data of pulse 73107.
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Figure 89: Field and Flux sensors used for the simulations.
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8
P R E L I M I N A RY S T U D I E S F O R T H E J T- 6 0 S A T O K A M A K

"The thing to judge in any Jazz artist is,

does the man project and does he have ideas. "

— Miles Davis

Japan and the European Union stipulated an agreement, named Broader

Approach (BA)[140], with the aim of accelerating the realization of fusion

energy by carrying out R&D and by developing some advanced technolo-

gies for future demonstration fusion power plants. The main project under

the BA agreement is the Satellite Tokamak Programme (STP), which in-

cludes the construction of the JT-60SA superconductive tokamak and its

exploitation as an ITER satellite facility [141, 142]. The STP is expected to de-

velop operating scenarios and address key physics issues to support ITER’s

start-up and experimentation. In fact, it is expected that the operation of

JT-60SA will complement that of ITER in the areas of fusion R&D which are

necessary to proceed towards the design and realization of DEMO[143].

European scientists are actively contributing to the definition of the

JT-60SA research plan [144], and an active involvement of a European team

in the operation of this forthcoming tokamak is foreseen. For this reason,

the European fusion community is carrying out preliminary studies related

to the exploitation of the device in different research fields. Besides a partic-

ipation in the physics experiment, the EU also aims at giving engineering

support to the operations [144, 145].

179
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In this context, several tools for the design and validation of control

systems are being developed in Europe; this is true also for what concerns

magnetic axisymmetric control. Within a dedicated Eurofusion workpack-

age, the CREATE tools have been exploited to perform preliminary studies

on plasma magnetic control at JT-60SA.

8.1 description of the machine

The JT-60SA tokamak is currently under construction in Naka, in

the Ibaraki Prefecture of Japan. Its plasma will have a major radius

of 2.96 m and a minor radius of 1.18 m, with an overall plasma vol-

ume of 132 m3 [141]; the maximum foreseen plasma current is 5.5 MA

for a plasma with a relatively low aspect ratio (elongation κ = 1.93 and

triangularity δ = 0.53), and 4.6 MA for an ITER-shaped plasma (κ = 1.8

and δ = 0.43). JT-60SA pulses will last up to a few hundreds of seconds [143,

146].

After the machine upgrade is completed, JT-60SA will be equipped

with a PFC system consisting of two sets of superconductive coils. The

first is composed by the six Niobium-Titanium (NbTi) Equilibrium Field

Coils (EFC), while the second is made up of four independent Niobium-Tin

(Nb3Sn) coils, which constitute the CS. Furthermore, two in-vessel copper

Fast Plasma Position Coils (FPPC) will also be installed. Fig. 92 shows the

PFC layout of JT-60SA.

8.2 controller design

The control architecture described in chapter 5 and applied to the EAST

tokamak in chapter 7 has been adapted to the JT-60SA device. A simplified

block diagram is shown in fig. 93.
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Figure 92: JT-60SA poloidal cross-section and layout of the PFC system.
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Figure 93: Proposed magnetic control architecture for the JT-60SA tokamak.

8.2.1 Vertical Stabilization system

The VS system computes the voltage requests to the FPPC coils as a linear

combination of the vertical velocity of the plasma and of the FPPC imbalance

current. As in EAST, the two in-vessel coils are up-down symmetric and

driven in anti-series. For this reason, the VS system can consider the FPPC

coils as a single circuit, where IFPPC(t) is the imbalance current between

the two coils, and VFPPCref(t) is the voltage, which must be applied with

opposite signs to the coils.

The resulting control law is

VFPPCref(t) = k1IFPPC(t) + k2żp(t) (114)

As it was discussed in sec. 7.1, the controller aims at regulating to zero the

plasma vertical velocity while maintaining the imbalance current IFPPC(t)

far from the saturation limits.

Again, the controller parameters do not need to be changed from one

scenario to another; furthermore, in this case the lead compensator was not

necessary. As usual, the only exception is the gain k2, which must be scaled

according to the plasma current reference Ipref .
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Figure 94: Nichols plots for the VS system for Scenario 1 and Scenario 2.

To assess the robustness of the VS system, the open-loop transfer function

between VFPPC(t) and the linear combination k1IFPPC(t) + k2żp(t) has been

considered, in the same way discussed in sec. 7.1.3. As an example, the

Nichols plots obtained with linearized models of Scenario 1 at t = 15.66 s,

and of Scenario 2 at t = 0.06, 0.16 and t = 18.66 s [146, Sec. 1.2] are shown

in fig. 94. As it can be seen, the gain margin stays in the range [5.58 , 9.83]dB,

while the phase margin is in the interval [34.4 , 65.0] degrees.

The possibility of using a near-time-optimal VS controller has also been

explored. For brevity, it will not be discussed here; interested readers are

referred to [14].

8.2.2 PF Currents Decoupling Controller

A PFC current decoupling controller like (77) has been tested for JT-60SA.

No integral action was included in the design of the controller, since the

PFC have been supposed to be perfectly superconducting. In real operation,

the integral action can be included easily; alternatively, the ohmic drop can

be compensated via a feedforward action (see sec. 5.2).
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Figure 95: Bode diagrams of the closed loop system obtained with the PFC-MIMO
decoupling controller (77). The diagonal channels (from the i− th volt-
age to the i− th current) exhibit very similar dynamic responses, while
the off-diagonal channels have a much lower magnitude, proving the
effectiveness of the decoupling.

The bode diagrams of the closed loop PF coils current control system are

shown in fig. 95.

8.2.3 Plasma Current controller

The Plasma Current control problem has been solved adopting a sim-

ple PID control logic. The current references for the CS and EFC coils are

calculated as

IPF(s) = Kpcurr

(
kP + kI

1

1+ sτI
+ kD

sτD
1+ sτD

)
Ipe(s) , (115)

where Ipe(s) = Ipref(s) − Ip(s) is the Laplace transform of the plasma cur-

rent control error, while Kpcurr is the vector containing the transformer cur-

rents, obtained via an optimization procedure, based on a plasmaless model

of the machine (see sec. 5.3).
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Similarly to what has been seen for the vertical stabilization algo-

rithm (114), the PID parameters in (115) can be tuned using SISO control

design tools on the basis of open-loop transfer function between the con-

sidered linear combination of PFC currents and the plasma current.

8.2.4 Shape controller

The controller design procedure is the same described in sec. 5.5. Both

isoflux and gap control have been tested. The results are discussed in sec. 8.3.

8.3 simulation results

8.3.1 Isoflux control

In this section some results obtained with the isoflux shape controller are

discussed. A set of 10 control points was chosen, including the two strike

points on the divertor plates (see fig. 96). A linearized model has been gen-

erated for Scenario 2 at the Start Of Flat-top (SOF) (i. e. t = 18.66 s, Ip =

5.5 MA, βp = 0.53, li = 0.85) [146, Sec. 1.2]. The PFC and FPPC power sup-

plies have been modelled as first order systems with a 3 ms time constant,

a pure delay of 1.5 ms and a voltage saturation.

A transition from the configuration described above and that of Sce-

nario 2 at the End Of Flat-top (EOF) (i. e. t = 116.46 s, Ip = 5.5 MA, βp =

0.80, li = 0.75) has been considered. In the simulation, this transition takes

place between t = 0 s and t = 5 s. The PFC feedforwards have been chosen

as ramps which start from the nominal currents of the first configuration

and approach those of the second one at the end of the transition time in-

terval; after t = 5 s, the scenario currents are kept constant. Furthermore,

the plasma current reference drops from 5.5 MA to 5.0 MA over the same

transition time interval. The initial time for the simulation was set to −3 s,

in order to eliminate the initial spurious transients. The initial and final ref-
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Figure 96: Initial and final plasma configurations for the simulation shown below.
The black lines represent the used control segments (including the strike
points).

erence shapes are shown in fig. 96, while the traces for βp and li are shown

in fig. 97. Figs. 98-102 show the obtained results in terms of PFC currents,

plasma current, null-point position, controlled flux differences and plasma

shape.

To conclude this section, it is worth to notice that, all the controlled vari-

ables have been obtained from the CREATE linearized model. However, in

the future a block containing the actual machine reconstruction code could

be easily included in the simulink architecture, in order to take into account

the nonlinearities due to the reconstruction when validating the control al-

gorithms (see [111]).
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Figure 101: Simulated controlled flux differences.
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8.3.2 Gap control

The same procedure described in sec. 5.5 can be used to design a gap

controller. This controller was tested as an alternative to the isoflux one, and

some preliminary results are discussed in this section.

The considered plasma scenario was again Scenario 2 [146, Sec. 1.2],

which was already discussed in sec. 8.3.1. A linearized model of this sce-

nario at the SOF has been used to design the proposed gap-based shape con-

troller and to simulate its behavior. To assess the controller performances,

the following set of disturbances –modelled as variations of βp and li– have

been considered (see fig. 103):

• Disturbance #1 refers to the behavior of βp and li soon after the cur-

rent flattop is reached (at t ∼ 16 s), as modelled in [147] on the basis

of the foreseen plasma density and temperature spatial profiles.

• Disturbance #2 simulates the occurrence of an ELM. As described

in [146, p. 34], during the flattop an instantaneous drop in βp of

0.05 βpeq is followed by and exponential recovery with a time con-

stant of 0.05 s with a frequency 10 Hz; li does not change.

• Disturbance #3 models a compound ELM, commonly referred to as a

series of multiple clearly distinguishable crash events which cause

large energy losses [148]. The time trace of βp is the same as in the

case of Disturbance #2, while li is characterized by an instantaneous

drop of 0.06 (lieq − 0.5) followed by and exponential recovery with a

time constant of 0.05 s with a frequency 10 Hz [146, p. 34].

• Disturbance #4 models a minor disruption; it consists in an instanta-

neous drop in li of 0.2 (lieq − 0.5) without recovery, simultaneous

with a drop on βp of 0.2 βpeq followed by a recovery exponential

time of 1 s [146, p. 34].
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Moreover, a reference tracking case has also been included, In particular,

a transition from the Scenario 2 reference shape to the one shown in black

in fig. 104 has been considered, to be performed in a time span of 1 s.
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Figure 103: Poloidal beta and internal inductance time traces for the considered
disturbances (courtesy of drs. D. Corona).

An analysis was carried out with the aim of choosing a set of controlled

gaps capable of providing a good trade-off between performances and num-

ber of controlled variables. In this view, an equally spaced distribution of 85

gaps was initially considered, as shown in fig. 105a. Other than the whole
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Figure 104: LCFS at the SOF for reference Scenario 2 (purple) and the modified
plasma shape considered (black). The transition time between the two
configurations is 1 s (courtesy of drs. D. Corona).

set of 85 gaps, three additional choices are discussed in the following. The

first one is shown in fig. 109, and consists of 20 gaps equally spaced along

the first wall. Moreover, the selections of 8 and 6 gaps corresponding to

the isoflux control segments considered in [149] and [150] respectively have

been also considered (figs. 108-107).

It is worth to remark that all of these choices include the two vertical

gaps in the divertor zone, which can be used to control the strike-points

(and consequently the X-point).

Fig. 106 shows the time trace of the Root-Mean-Square Error (RMSE) for

the different test cases considered, computed over all the 85 available gaps.

Periodic disturbances (i. e. ELMs and compound ELMs) were supposed to

act for a finite time window of 1.55 s and removed afterwards, allowing the
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Figure 105: Different choices for the set of controlled gaps (courtesy of drs.
D. Corona).
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system to evolve towards a steady-state. In particular, it is worth to notice

that, with respect to the reference shape change test case, the controller

shows a considerable transient error when the 8 gaps choice is considered.

This is mostly due to the fact that this selection does not include any gap in

the top region of the plasma, which is the one that is most affected by the

shape change.
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Figure 106: RMSE time trace for Disturbances #1-#4 and for the shape tracking case
with 6, 8 and 20 gaps (courtesy of drs. D. Corona).

The obtained results are summarized in table 3, which shows the RMSE

between the reference and the obtained shapes at steady-state, after the

occurrence of the disturbance or the reference change. As it turns out, for

all the considered cases, the sets of 85 and 20 gaps provide a considerable

better steady-state RMSE in comparison with those of 8 or 6 gaps.

Apart from the shape tracking, it can be seen that the worst case corre-

sponds to the selection of 8 gaps with the presence of Disturbance #4. Some
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Steady-state RMSE [mm]
85 Gaps 20 Gaps 8 Gaps 6 Gaps

Disturbance #1 7.7 8.7 31.2 19.8

Disturbance #2 ~0 ~0 ~0 ~0

Disturbance #3 ~0 ~0 ~0 ~0

Disturbance #4 6.1 7.8 48.5 32.5

Reference
shape tracking

5.6 8.4 40.6 14.7

Table 3: RMSE values for different choices of controlled gaps for the proposed test
cases (courtesy of drs. D. Corona).

details regarding the results obtained for Disturbance #4 with the different

gaps choices proposed are shown in figs. 107-110.

Finally, it is worth to observe that there is no practical difference between

the reference shape and the one attained at steady-state in all the proposed

test cases when the two options with 85 and 20 equally spaced gaps are con-

sidered. Hence, among the considered configurations, the 20 gaps selection

represents the optimal choice for the set of gaps to be controlled assuming

a XSC-like control approach.
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Figure 107: Steady-state plasma shape when controlling 6 gaps in presence of Dis-
turbance #4 (courtesy of drs. D. Corona).
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Figure 108: Steady-state plasma shape when controlling 8 gaps in presence of Dis-
turbance #4 (courtesy of drs. D. Corona).
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Figure 109: Steady-state plasma shape when controlling 20 gaps in presence of
Disturbance #4 (courtesy of drs. D. Corona).
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(b) PFC voltages for Disturbance #4 with 8 gaps.
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Figure 110: PFC voltages for Disturbance #4 for different gap choices (courtesy of
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C O N C L U S I O N S

In this work, a flexible architecture for plasma magnetic control in toka-

mak reactors has been proposed. This architecture includes all the control

loops which are customarily present on a modern tokamak magnetic con-

trol system, and prompts the advantage of allowing to easily include addi-

tional controlled variables. Once a set of modelling tools has been assessed

and validated for the target machine, the control design procedures can be

carried out almost automatically; moreover, it becomes possible to test the

controller in simulation before using it in an actual plasma discharge. In

this way, the experimental time needed to tune and validate the controller

is greatly reduced, together with the number of failed discharges, which

could damage the machine. The proposed architecture could also –at least

in principle– be used during the plasma start-up phases (i. e. breakdown,

burn-through and ramp-up). This can be done by substituting the external

shape control loop with adequate current feedforwards or with an alterna-

tive controller which acts on the magnetic field in a number of control point

in the null region, producing current requests to the PFC system.

The proposed solution has been applied to the EAST reactor in order to

enhance the shape control performances, with the final aim of making feed-

back control of alternative divertor configurations possible. In particular,

exploiting the CREATE-L and CREATE-NL codes a set of modelling and

simulation tools was set up and validated against the experimental data

(see chapter 6). These tools proved to be able of providing a sufficiently

detailed description of the physical behaviour of the machine, although

being simple enough to be useful for the purposes of controller design.

Once assessed, this simulation environment was extensively used both to

201
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re-design EAST’s existing magnetic controllers and to propose new ones (see

sec. 7.1-7.5). The developed simulation tools were also used to design an

optimal state observer for the reactor; this observer estimates the eddy cur-

rents in the passive structures and provides a shape reconstruction based

on a superposition of a first order perturbation over the equilibrium shape

(see sec. 7.6). Experiments are still ongoing, and additional results are ex-

pected by the beginning of 2019. Starting in 2019, a machine upgrade is

also foreseen; this upgrade includes the installation of new In-Vessel coils,

paving the way to a more efficient control of magnetic configurations such

as the snowflake divertor. With this upgrade, the tools proposed hereby

are expected to be exploited again in order to achieve an effective feedback

control of such alternative configurations. However, some advances in this

direction are already foreseen during the next experimental campaign, in

the scope of which the control of secondary null points or other physically

meaningful quantities such as the poloidal flux expansion are among the

main goals to be achieved. In this view, the simulation results discussed in

sec. 7.5 represent a first step.

Furthermore, the proposed control architecture was also applied to the

JT-60SA reactor, whose first plasma is foreseen in 2020. The development of

reliable and flexible modelling and control tools allows to propose different

solutions in order to meet the requirements for the magnetic control system

(see chapter 8). It is worth to remark that the same simulation and design

environment was used for both EAST and JT-60SA, proving to represent an

effective and flexible resource for the design of magnetic controllers in toka-

mak reactors. A full magnetic control system was designed and tested in

simulation, including either an isoflux or a gap-based shape controller. The

integration of the proposed tools with the codes provides by the Japanese

research unit, in particular the Cauchy Condition Surface (CCS) reconstruc-

tion routine, is currently ongoing. The availability of CCS in the proposed

simulation environment will also make it possible to assess the impact of
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magnetic sensors measurement noise on both the plasma boundary recon-

struction and the plasma magnetic control system.

In the near future, studies on the application of the solution proposed

in this thesis to the Divertor Tokamak Test (DTT) facility design are also

foreseen, in particular for what concerns the feedback control of alterna-

tive divertor configurations such as the Snowflake, X and Super-X diver-

tor configurations. Experiments with the proposed control solution on the

Tokamak à Configuration Variable (TCV) facility have also been proposed.
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